Embroidered flexible RF electronics

J. Volakis, Lanlin Zhang, Zheyu Wang, Y. Bayram
{"title":"Embroidered flexible RF electronics","authors":"J. Volakis, Lanlin Zhang, Zheyu Wang, Y. Bayram","doi":"10.1109/IWAT.2012.6178385","DOIUrl":null,"url":null,"abstract":"We introduce a novel class of flexible Radio Frequency (RF) electronics composed of conductive fibers on polymer or fabric substrates. The proposed fiber conductors and polymer substrates provide excellent RF characteristics, including mechanical flexibility and conformality. Key to the improved conductivity is the increased stitching density of the employed conductive fibers, reaching >;70 stitches per cm2. Prototype flexible antennas and circuits were fabricated and validated for their RF performance. These were realized by embroidering them on organza fabrics or by integrating them on thin polymer substrates. Their RF performance was found comparable to their conventional copper counterparts. Because of their excellent RF performance and high level of flexibility, these embroidered antennas should lead to a new class of devices expected to provide high data rate, low profile, and reliable operation for RF applications.","PeriodicalId":6341,"journal":{"name":"2012 IEEE International Workshop on Antenna Technology (iWAT)","volume":"26 1","pages":"8-11"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2012.6178385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We introduce a novel class of flexible Radio Frequency (RF) electronics composed of conductive fibers on polymer or fabric substrates. The proposed fiber conductors and polymer substrates provide excellent RF characteristics, including mechanical flexibility and conformality. Key to the improved conductivity is the increased stitching density of the employed conductive fibers, reaching >;70 stitches per cm2. Prototype flexible antennas and circuits were fabricated and validated for their RF performance. These were realized by embroidering them on organza fabrics or by integrating them on thin polymer substrates. Their RF performance was found comparable to their conventional copper counterparts. Because of their excellent RF performance and high level of flexibility, these embroidered antennas should lead to a new class of devices expected to provide high data rate, low profile, and reliable operation for RF applications.
绣花柔性射频电子器件
我们介绍了一种新型的柔性射频(RF)电子器件,由导电纤维在聚合物或织物衬底上组成。所提出的光纤导体和聚合物基板提供了优异的射频特性,包括机械灵活性和一致性。提高导电性的关键是增加了所使用的导电纤维的缝合密度,达到每平方厘米70针。制作了原型柔性天线和电路,并对其射频性能进行了验证。这些是通过将它们绣在欧根纱织物上或将它们集成在薄聚合物衬底上实现的。发现它们的射频性能与传统的铜对应物相当。由于其出色的射频性能和高水平的灵活性,这些刺绣天线将导致一种新的设备,有望为射频应用提供高数据速率、低姿态和可靠的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信