Regularity results and numerical solution by the discontinuous Galerkin method to semilinear parabolic initial boundary value problems with nonlinear Newton boundary conditions in a polygonal space-time cylinder
{"title":"Regularity results and numerical solution by the discontinuous Galerkin method to semilinear parabolic initial boundary value problems with nonlinear Newton boundary conditions in a polygonal space-time cylinder","authors":"M. Balázsová, M. Feistauer, A. Sändig","doi":"10.1515/jnma-2021-0113","DOIUrl":null,"url":null,"abstract":"Abstract In this note we consider a parabolic evolution equation in a polygonal space-time cylinder. We show, that the elliptic part is given by a m-accretive mapping from Lq(Ω) → Lq(Ω). Therefore we can apply the theory of nonlinear semigroups in Banach spaces in order to get regularity results in time and space. The second part of the paper deals with the numerical solution of the problem. It is dedicated to the application of the space-time discontinuous Galerkin method (STDGM). It means that both in space as well as in time discontinuous piecewise polynomial approximations of the solution are used. We concentrate to the theoretical analysis of the error estimation.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0113","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this note we consider a parabolic evolution equation in a polygonal space-time cylinder. We show, that the elliptic part is given by a m-accretive mapping from Lq(Ω) → Lq(Ω). Therefore we can apply the theory of nonlinear semigroups in Banach spaces in order to get regularity results in time and space. The second part of the paper deals with the numerical solution of the problem. It is dedicated to the application of the space-time discontinuous Galerkin method (STDGM). It means that both in space as well as in time discontinuous piecewise polynomial approximations of the solution are used. We concentrate to the theoretical analysis of the error estimation.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.