Regularity results and numerical solution by the discontinuous Galerkin method to semilinear parabolic initial boundary value problems with nonlinear Newton boundary conditions in a polygonal space-time cylinder

IF 3.8 2区 数学 Q1 MATHEMATICS
M. Balázsová, M. Feistauer, A. Sändig
{"title":"Regularity results and numerical solution by the discontinuous Galerkin method to semilinear parabolic initial boundary value problems with nonlinear Newton boundary conditions in a polygonal space-time cylinder","authors":"M. Balázsová, M. Feistauer, A. Sändig","doi":"10.1515/jnma-2021-0113","DOIUrl":null,"url":null,"abstract":"Abstract In this note we consider a parabolic evolution equation in a polygonal space-time cylinder. We show, that the elliptic part is given by a m-accretive mapping from Lq(Ω) → Lq(Ω). Therefore we can apply the theory of nonlinear semigroups in Banach spaces in order to get regularity results in time and space. The second part of the paper deals with the numerical solution of the problem. It is dedicated to the application of the space-time discontinuous Galerkin method (STDGM). It means that both in space as well as in time discontinuous piecewise polynomial approximations of the solution are used. We concentrate to the theoretical analysis of the error estimation.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2021-0113","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this note we consider a parabolic evolution equation in a polygonal space-time cylinder. We show, that the elliptic part is given by a m-accretive mapping from Lq(Ω) → Lq(Ω). Therefore we can apply the theory of nonlinear semigroups in Banach spaces in order to get regularity results in time and space. The second part of the paper deals with the numerical solution of the problem. It is dedicated to the application of the space-time discontinuous Galerkin method (STDGM). It means that both in space as well as in time discontinuous piecewise polynomial approximations of the solution are used. We concentrate to the theoretical analysis of the error estimation.
多边形时空柱体中具有非线性牛顿边界条件的半线性抛物型初边值问题的正则性结果及不连续Galerkin方法的数值解
摘要本文考虑一个多边形时空柱体中的抛物演化方程。我们证明了椭圆部分是由Lq(Ω)→Lq(Ω)的m吸积映射给出的。因此,我们可以在Banach空间中应用非线性半群理论来得到时间和空间上的正则性结果。论文的第二部分是该问题的数值解。研究了时空不连续伽辽金方法的应用。这意味着在空间和时间上都使用了解的不连续分段多项式近似。重点对误差估计进行了理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信