Effect of Waste Vegetable Oil on Cooling Performance and Lifetime of Power Transformers

E. Ebrahimnia-Bajestan, M. Arjmand, Hani Tiznobaik
{"title":"Effect of Waste Vegetable Oil on Cooling Performance and Lifetime of Power Transformers","authors":"E. Ebrahimnia-Bajestan, M. Arjmand, Hani Tiznobaik","doi":"10.1115/es2020-1716","DOIUrl":null,"url":null,"abstract":"\n During the operation of a power transformer, a large amount of heat is generated due to the electrical and magnetic energy losses in its core and windings, causing a temperature rise in transformers. This generated heat is known as the main factor for aging the electrical insulating system of a transformer. In this research, we numerically studied the ability of a vegetable-based oil — as an alternative coolant for the petroleum-based oils — on the cooling performance of a power transformer. The studied oil was a biodiesel produced from waste cooking vegetable oils, having lower viscosity compared to traditional mineral oils. We also calculated the aging rate of the transformer in the presence of the biodiesel. The results indicated that compared to the mineral oil, the average hotspot temperature of the transformer is 3 degrees lower when the biodiesel was used. The life expectancy of the transformer with the vegetable-based oil was also significantly longer than the case with mineral oil. In conclusion, this study provided a sustainable way to use an eco-friendly material produced from a waste resource as an alternative insulating liquid for the cooling of power transformers.","PeriodicalId":8602,"journal":{"name":"ASME 2020 14th International Conference on Energy Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 14th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2020-1716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During the operation of a power transformer, a large amount of heat is generated due to the electrical and magnetic energy losses in its core and windings, causing a temperature rise in transformers. This generated heat is known as the main factor for aging the electrical insulating system of a transformer. In this research, we numerically studied the ability of a vegetable-based oil — as an alternative coolant for the petroleum-based oils — on the cooling performance of a power transformer. The studied oil was a biodiesel produced from waste cooking vegetable oils, having lower viscosity compared to traditional mineral oils. We also calculated the aging rate of the transformer in the presence of the biodiesel. The results indicated that compared to the mineral oil, the average hotspot temperature of the transformer is 3 degrees lower when the biodiesel was used. The life expectancy of the transformer with the vegetable-based oil was also significantly longer than the case with mineral oil. In conclusion, this study provided a sustainable way to use an eco-friendly material produced from a waste resource as an alternative insulating liquid for the cooling of power transformers.
废植物油对电力变压器冷却性能和寿命的影响
电力变压器在运行过程中,由于铁芯和绕组的电能、磁能损耗,会产生大量的热量,从而引起变压器的温升。这种产生的热量被称为变压器电气绝缘系统老化的主要因素。在这项研究中,我们数值研究了植物油作为石油基油的替代冷却剂对电力变压器冷却性能的影响。所研究的油是由废弃烹饪植物油生产的生物柴油,与传统矿物油相比具有较低的粘度。我们还计算了变压器在生物柴油存在下的老化速率。结果表明,与矿物油相比,使用生物柴油时变压器的平均热点温度降低了3度。使用植物油的变压器寿命也明显长于使用矿物油的变压器。总之,这项研究提供了一种可持续的方法,使用从废物资源中产生的环保材料作为电力变压器冷却的替代绝缘液体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信