Magnetohydrodynamic flow through porous media

Christian Geindreau, Jean-Louis Auriault
{"title":"Magnetohydrodynamic flow through porous media","authors":"Christian Geindreau,&nbsp;Jean-Louis Auriault","doi":"10.1016/S1620-7742(01)01354-X","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the filtration law in rigid porous media for steady-state slow flow of an electrically conducting, incompressible and viscous Newtonian fluid in the presence of magnetic field. The seepage law under magnetic field is obtained by upscaling the flow at the pore scale by using the method of multiple scale expansions. The macroscopic magnetic field and electric flux are also obtained. For finite Hartmann number, i.e. <span><math><mtext>ε⪡Ha⪡ε</mtext><msup><mi></mi><mn>−1</mn></msup></math></span> where <span><math><mtext>ε</mtext></math></span> characterizes the separation of scale, the filtration law is shown to resemble a Darcy's law but with an additional term proportional to the electric field. The permeability tensor which strongly depends on the magnetic induction, i.e. Hartmann number, is symmetric, positive and verifies the filtration analog of the Hall effect. Mass and electric fluxes are coupled.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 6","pages":"Pages 445-450"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01354-X","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S162077420101354X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We investigate the filtration law in rigid porous media for steady-state slow flow of an electrically conducting, incompressible and viscous Newtonian fluid in the presence of magnetic field. The seepage law under magnetic field is obtained by upscaling the flow at the pore scale by using the method of multiple scale expansions. The macroscopic magnetic field and electric flux are also obtained. For finite Hartmann number, i.e. ε⪡Ha⪡ε−1 where ε characterizes the separation of scale, the filtration law is shown to resemble a Darcy's law but with an additional term proportional to the electric field. The permeability tensor which strongly depends on the magnetic induction, i.e. Hartmann number, is symmetric, positive and verifies the filtration analog of the Hall effect. Mass and electric fluxes are coupled.

通过多孔介质的磁流体动力学流动
研究了一种导电、不可压缩、粘性牛顿流体在磁场作用下的稳态慢流在刚性多孔介质中的过滤规律。采用多尺度膨胀法对孔隙尺度上尺度流动进行放大,得到了磁场作用下的渗流规律。得到了宏观磁场和电通量。对于有限的哈特曼数,即ε⪡Ha⪡ε−1,其中ε表征了尺度的分离,过滤定律被证明类似于达西定律,但增加了一个与电场成正比的附加项。磁导率张量强依赖于磁感应强度,即哈特曼数,它是对称的、正的,验证了霍尔效应的过滤模拟。质量和电通量是耦合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信