SHREC 2022: pothole and crack detection in the road pavement using images and RGB-D data

Q4 Computer Science
E. M. Thompson, A. Ranieri, S. Biasotti, Miguel Chicchón, I. Sipiran, Minh Pham, Thang-Long Nguyen-Ho, Hai-Dang Nguyen, M. Tran
{"title":"SHREC 2022: pothole and crack detection in the road pavement using images and RGB-D data","authors":"E. M. Thompson, A. Ranieri, S. Biasotti, Miguel Chicchón, I. Sipiran, Minh Pham, Thang-Long Nguyen-Ho, Hai-Dang Nguyen, M. Tran","doi":"10.48550/arXiv.2205.13326","DOIUrl":null,"url":null,"abstract":"This paper describes the methods submitted for evaluation to the SHREC 2022 track on pothole and crack detection in the road pavement. A total of 7 different runs for the semantic segmentation of the road surface are compared, 6 from the participants plus a baseline method. All methods exploit Deep Learning techniques and their performance is tested using the same environment (i.e.: a single Jupyter notebook). A training set, composed of 3836 semantic segmentation image/mask pairs and 797 RGB-D video clips collected with the latest depth cameras was made available to the participants. The methods are then evaluated on the 496 image/mask pairs in the validation set, on the 504 pairs in the test set and finally on 8 video clips. The analysis of the results is based on quantitative metrics for image segmentation and qualitative analysis of the video clips. The participation and the results show that the scenario is of great interest and that the use of RGB-D data is still challenging in this context.","PeriodicalId":51003,"journal":{"name":"Computer Graphics World","volume":"12 1","pages":"161-171"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.13326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes the methods submitted for evaluation to the SHREC 2022 track on pothole and crack detection in the road pavement. A total of 7 different runs for the semantic segmentation of the road surface are compared, 6 from the participants plus a baseline method. All methods exploit Deep Learning techniques and their performance is tested using the same environment (i.e.: a single Jupyter notebook). A training set, composed of 3836 semantic segmentation image/mask pairs and 797 RGB-D video clips collected with the latest depth cameras was made available to the participants. The methods are then evaluated on the 496 image/mask pairs in the validation set, on the 504 pairs in the test set and finally on 8 video clips. The analysis of the results is based on quantitative metrics for image segmentation and qualitative analysis of the video clips. The participation and the results show that the scenario is of great interest and that the use of RGB-D data is still challenging in this context.
SHREC 2022:使用图像和RGB-D数据检测道路路面的坑洼和裂缝
本文介绍了提交给SHREC 2022轨道评估的道路路面凹坑和裂缝检测方法。总共比较了7种不同的路面语义分割方法,其中6种来自参与者加上基线方法。所有方法都利用深度学习技术,并使用相同的环境(即:单个Jupyter笔记本)对其性能进行测试。由3836个语义分割图像/掩码对和797个RGB-D视频片段组成的训练集,由最新深度相机采集。然后在验证集中的496对图像/掩码对上评估方法,在测试集中的504对上评估方法,最后在8个视频剪辑上评估方法。对结果的分析是基于图像分割的定量指标和视频片段的定性分析。参与和结果表明,该方案非常有趣,并且在这种情况下使用RGB-D数据仍然具有挑战性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Graphics World
Computer Graphics World 工程技术-计算机:软件工程
CiteScore
0.03
自引率
0.00%
发文量
0
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信