{"title":"A Survey of the Proof-Theoretic Foundations of Logic Programming","authors":"D. Miller","doi":"10.1017/s1471068421000533","DOIUrl":null,"url":null,"abstract":"\n Several formal systems, such as resolution and minimal model semantics, provide a framework for logic programming. In this article, we will survey the use of structural proof theory as an alternative foundation. Researchers have been using this foundation for the past 35 years to elevate logic programming from its roots in first-order classical logic into higher-order versions of intuitionistic and linear logic. These more expressive logic programming languages allow for capturing stateful computations and rich forms of abstractions, including higher-order programming, modularity, and abstract data types. Term-level bindings are another kind of abstraction, and these are given an elegant and direct treatment within both proof theory and these extended logic programming languages. Logic programming has also inspired new results in proof theory, such as those involving polarity and focused proofs. These recent results provide a high-level means for presenting the differences between forward-chaining and backward-chaining style inferences. Anchoring logic programming in proof theory has also helped identify its connections and differences with functional programming, deductive databases, and model checking.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"62 1","pages":"859-904"},"PeriodicalIF":1.4000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1471068421000533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Several formal systems, such as resolution and minimal model semantics, provide a framework for logic programming. In this article, we will survey the use of structural proof theory as an alternative foundation. Researchers have been using this foundation for the past 35 years to elevate logic programming from its roots in first-order classical logic into higher-order versions of intuitionistic and linear logic. These more expressive logic programming languages allow for capturing stateful computations and rich forms of abstractions, including higher-order programming, modularity, and abstract data types. Term-level bindings are another kind of abstraction, and these are given an elegant and direct treatment within both proof theory and these extended logic programming languages. Logic programming has also inspired new results in proof theory, such as those involving polarity and focused proofs. These recent results provide a high-level means for presenting the differences between forward-chaining and backward-chaining style inferences. Anchoring logic programming in proof theory has also helped identify its connections and differences with functional programming, deductive databases, and model checking.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.