Definable V-topologies, Henselianity and NIP

IF 0.9 1区 数学 Q1 LOGIC
Yatir Halevi, Assaf Hasson, Franziska Jahnke
{"title":"Definable V-topologies, Henselianity and NIP","authors":"Yatir Halevi, Assaf Hasson, Franziska Jahnke","doi":"10.1142/s0219061320500087","DOIUrl":null,"url":null,"abstract":"We initiate the study of definable [Formula: see text]-topologies and show that there is at most one such [Formula: see text]-topology on a [Formula: see text]-henselian NIP field. Equivalently, we show that if [Formula: see text] is a bi-valued NIP field with [Formula: see text] henselian (respectively, [Formula: see text]-henselian), then [Formula: see text] and [Formula: see text] are comparable (respectively, dependent). As a consequence, Shelah’s conjecture for NIP fields implies the henselianity conjecture for NIP fields. Furthermore, the latter conjecture is proved for any field admitting a henselian valuation with a dp-minimal residue field. We conclude by showing that Shelah’s conjecture is equivalent to the statement that any NIP field not contained in the algebraic closure of a finite field is [Formula: see text]-henselian.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"115 1","pages":"2050008:1-2050008:33"},"PeriodicalIF":0.9000,"publicationDate":"2019-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061320500087","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 19

Abstract

We initiate the study of definable [Formula: see text]-topologies and show that there is at most one such [Formula: see text]-topology on a [Formula: see text]-henselian NIP field. Equivalently, we show that if [Formula: see text] is a bi-valued NIP field with [Formula: see text] henselian (respectively, [Formula: see text]-henselian), then [Formula: see text] and [Formula: see text] are comparable (respectively, dependent). As a consequence, Shelah’s conjecture for NIP fields implies the henselianity conjecture for NIP fields. Furthermore, the latter conjecture is proved for any field admitting a henselian valuation with a dp-minimal residue field. We conclude by showing that Shelah’s conjecture is equivalent to the statement that any NIP field not contained in the algebraic closure of a finite field is [Formula: see text]-henselian.
可定义v -拓扑、Henselianity和NIP
我们开始研究可定义的[公式:见文]-拓扑,并证明在[公式:见文]-henselian NIP域上最多有一个这样的[公式:见文]-拓扑。同样地,我们证明,如果[Formula: see text]是一个双值NIP字段,具有[Formula: see text] henselian(分别为[Formula: see text]-henselian),则[Formula: see text]和[Formula: see text]具有可比性(分别为依赖性)。因此,Shelah的NIP域猜想暗示了NIP域的henselianity猜想。进一步证明了后一个猜想对于任何具有最小残差域的域都具有henselian值。我们通过证明Shelah的猜想等价于任何不包含在有限域的代数闭包中的NIP域都是-henselian的命题来得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信