An Improved HIK for Object Categorization

Lu Wu, Quan Liu, Qin Wei
{"title":"An Improved HIK for Object Categorization","authors":"Lu Wu, Quan Liu, Qin Wei","doi":"10.1109/IHMSC.2015.257","DOIUrl":null,"url":null,"abstract":"In this paper we applied a Histogram Intersection Kernel (HIK) method for categorization of the Caltech101 dataset. We analyzed the principles of HIK and propose an optimal linear combination of kernels used in Spatial Pyramid model (SPM). Sift algorithm is utilized to detect and describe image features based on Bag of Words model. The performance is compared between HIK and general RBF using SVM for the classification. The experimental results show that, based on the same image dataset, HIK outperforms RBF. Furthermore, HIK-SVM's performance is improved with the increasing layers of SPM. On the contrary, RBF-SVM's performance worsens when the layers of SPM increase.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"125 1","pages":"412-415"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we applied a Histogram Intersection Kernel (HIK) method for categorization of the Caltech101 dataset. We analyzed the principles of HIK and propose an optimal linear combination of kernels used in Spatial Pyramid model (SPM). Sift algorithm is utilized to detect and describe image features based on Bag of Words model. The performance is compared between HIK and general RBF using SVM for the classification. The experimental results show that, based on the same image dataset, HIK outperforms RBF. Furthermore, HIK-SVM's performance is improved with the increasing layers of SPM. On the contrary, RBF-SVM's performance worsens when the layers of SPM increase.
一种用于对象分类的改进HIK
本文采用直方图交叉核(HIK)方法对Caltech101数据集进行分类。本文分析了空间金字塔模型的基本原理,提出了空间金字塔模型(SPM)的最优线性组合。基于Bag of Words模型,利用Sift算法对图像特征进行检测和描述。利用支持向量机进行分类,比较了HIK和一般RBF的性能。实验结果表明,在相同的图像数据集上,HIK算法优于RBF算法。此外,HIK-SVM的性能随着SPM层数的增加而提高。相反,随着SPM层数的增加,RBF-SVM的性能反而变差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信