Bundles with Non-multiplicativeÂ-Genus and Spaces of Metrics with Lower Curvature Bounds

Georg Frenck, Jens Reinhold
{"title":"Bundles with Non-multiplicativeÂ-Genus and Spaces of Metrics with Lower Curvature Bounds","authors":"Georg Frenck, Jens Reinhold","doi":"10.1093/IMRN/RNAA361","DOIUrl":null,"url":null,"abstract":"We construct smooth bundles with base and fiber products of two spheres whose total spaces have non-vanishing $\\hat{A}$-genus. We then use these bundles to locate non-trivial rational homotopy groups of spaces of Riemannian metrics with lower curvature bounds for all Spin-manifolds of dimension six or at least ten which admit such a metric and are a connected sum of some manifold and $S^n \\times S^n$ or $S^n \\times S^{n+1}$, respectively. We also construct manifolds $M$ whose spaces of Riemannian metrics of positive scalar curvature have homotopy groups that contain elements of infinite order which lie in the image of the orbit map induced by the push-forward action of the diffeomorphism group of $M$.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAA361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We construct smooth bundles with base and fiber products of two spheres whose total spaces have non-vanishing $\hat{A}$-genus. We then use these bundles to locate non-trivial rational homotopy groups of spaces of Riemannian metrics with lower curvature bounds for all Spin-manifolds of dimension six or at least ten which admit such a metric and are a connected sum of some manifold and $S^n \times S^n$ or $S^n \times S^{n+1}$, respectively. We also construct manifolds $M$ whose spaces of Riemannian metrics of positive scalar curvature have homotopy groups that contain elements of infinite order which lie in the image of the orbit map induced by the push-forward action of the diffeomorphism group of $M$.
具有Non-multiplicativeÂ-Genus的束和具有低曲率边界的度量空间
我们构造了两个总空间具有不消失$\hat{A}$-属的球的基积和纤维积的光滑束。然后我们利用这些束来定位具有下曲率界的黎曼度量空间的非平凡有理同伦群,适用于所有六维或至少十维的自旋流形,它们分别是一些流形与$S^n \乘以S^n$或$S^n \乘以S^{n+1}$的连通和。我们还构造了流形$M$,其正标量曲率的黎曼度量空间具有包含无限阶元素的同伦群,这些元素位于由$M$的微分同构群的前推作用所引起的轨道映射的像中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信