Ai-Enhanced Incentive Design for Crowdsourcing in Internet of Vehicles

Yanlin Yue, Wen Sun, Jiajia Liu, Yuanhe Jiang
{"title":"Ai-Enhanced Incentive Design for Crowdsourcing in Internet of Vehicles","authors":"Yanlin Yue, Wen Sun, Jiajia Liu, Yuanhe Jiang","doi":"10.1109/VTCFall.2019.8891430","DOIUrl":null,"url":null,"abstract":"Crowdsourcing, as an essential part in Internet of Vehicles (IoV), can provide vehicles with various functions such as road condition monitoring and path planning. The prevalence and heterogeneity of crowdsourcing devices, although enabling various emerging applications in IoV, makes it challenging to yield intelligent and flexible incentive and management framework, while ensuring optimal choice for all entities. Note that artificial intelligence (AI) algorithms could automatically select the significant features in the underlying data and globally find optimal solutions even for non-convex object functions. In this paper, we propose an AI-driven incentive scheme using a deep learning based reverse auction scheme, in order to achieve revenue-optimal, dominant-strategy incentive compatible objectives. The effectiveness of the proposed framework has been verified through extensive simulations.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"12 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Crowdsourcing, as an essential part in Internet of Vehicles (IoV), can provide vehicles with various functions such as road condition monitoring and path planning. The prevalence and heterogeneity of crowdsourcing devices, although enabling various emerging applications in IoV, makes it challenging to yield intelligent and flexible incentive and management framework, while ensuring optimal choice for all entities. Note that artificial intelligence (AI) algorithms could automatically select the significant features in the underlying data and globally find optimal solutions even for non-convex object functions. In this paper, we propose an AI-driven incentive scheme using a deep learning based reverse auction scheme, in order to achieve revenue-optimal, dominant-strategy incentive compatible objectives. The effectiveness of the proposed framework has been verified through extensive simulations.
车联网众包的ai增强激励设计
众包作为车联网的重要组成部分,可以为车辆提供路况监测、路径规划等多种功能。众包设备的普遍性和异质性,虽然在车联网中实现了各种新兴应用,但在确保所有实体的最佳选择的同时,产生智能和灵活的激励和管理框架是一项挑战。请注意,人工智能(AI)算法可以自动选择底层数据中的重要特征,并在全局范围内找到最优解,即使是非凸对象函数。在本文中,我们提出了一个人工智能驱动的激励方案,使用基于深度学习的反向拍卖方案,以实现收入最优,优势策略激励相容的目标。通过大量的仿真验证了所提出框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信