On the $\mathcal{T}$ Decomposition Method for PD Controllers of the Low Order Time Delay Process

Tiaoyang Cai, Ran-Ran Zhang
{"title":"On the $\\mathcal{T}$ Decomposition Method for PD Controllers of the Low Order Time Delay Process","authors":"Tiaoyang Cai, Ran-Ran Zhang","doi":"10.1109/YAC.2019.8787621","DOIUrl":null,"url":null,"abstract":"The stabilization of Second Order Time Delay Process (SOTDP) with proportional derivative (PD) controllers is considered. A novel procedure following the line of the $\\tau$ decomposition method is proposed to characterize the space of controller parameters. The division of the space of controller parameters are related to the determination of the purely imaginary roots (PIRs), and the calculation of stable intervals refers to the order of the PIRs. According to our result, analytical formulas on both topics are obtained and the stability switch (under some certain PD controller) versus delay is revealed. Finally, numerical simulations show the effectiveness and correctness.","PeriodicalId":6669,"journal":{"name":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"20 1","pages":"166-169"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2019.8787621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The stabilization of Second Order Time Delay Process (SOTDP) with proportional derivative (PD) controllers is considered. A novel procedure following the line of the $\tau$ decomposition method is proposed to characterize the space of controller parameters. The division of the space of controller parameters are related to the determination of the purely imaginary roots (PIRs), and the calculation of stable intervals refers to the order of the PIRs. According to our result, analytical formulas on both topics are obtained and the stability switch (under some certain PD controller) versus delay is revealed. Finally, numerical simulations show the effectiveness and correctness.
低阶时滞过程PD控制器的$\mathcal{T}$分解方法
研究了比例微分控制器对二阶时滞过程(SOTDP)的镇定问题。提出了一种继承$\tau$分解方法的新方法来表征控制器参数空间。控制器参数空间的划分涉及到纯虚根(pir)的确定,稳定区间的计算涉及到pir的阶数。根据我们的结果,得到了这两个题目的解析公式,并揭示了(在一定PD控制器下)稳定性对延迟的切换。最后,通过数值仿真验证了该方法的有效性和正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信