Lactic acid fermentation of banana peel using Lactobacillus plantarum : Effect of substrate concentration, inoculum concentration, and various nitrogen sources

A. Abdullah, Yufrida Amalia
{"title":"Lactic acid fermentation of banana peel using Lactobacillus plantarum : Effect of substrate concentration, inoculum concentration, and various nitrogen sources","authors":"A. Abdullah, Yufrida Amalia","doi":"10.14710/reaktor.22.3.92-101","DOIUrl":null,"url":null,"abstract":"Semeru Banana peel is an organic waste that is exclusively utilized as animal feed and does not harm the environment. The primary component of banana peels is carbohydrates, which can be used as a substrate during the fermentation process to produce lactic acid. The fermentation of banana peel flour with Lactobacillus plantarum strain FNCC 0020 was the main focus of this investigation. Variations in the concentrations of the substrate and inoculum as well as the impact of the type of nitrogen on lactic acid concentration were investigated. According to research findings, the big banana peel contains 70.52% carbs, 5.68% soluble protein, 3.115% fat, 6.74% water, 2.395% ash, and 13.38% crude fiber. While the inoculum variable was 0.5% v/v and the best substrate concentration variable was 17.5% w/v, the best lactic acid concentrations were 5.401 g/L and 8.586 g/L, respectively, as determined by HPLC (High-Performance Liquid) analysis. Banana peel flour only includes a modest amount of nitrogen (0.8295%), sulfate (0.037 grams), phosphate (1.6105%), and vitamin B1 (0.2315%), so additional nitrogen sources must be added. The production of lactic acid is shown to increase with the addition of various forms of nitrogen, with ammonium sulfate and ammonium phosphate (2:1) producing the greatest yields of 9.781 g/L and 14.255 g/L, respectively, of lactic acid, which is lower than lactic acid from yeast extract.","PeriodicalId":20874,"journal":{"name":"Reaktor","volume":"01 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaktor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/reaktor.22.3.92-101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Semeru Banana peel is an organic waste that is exclusively utilized as animal feed and does not harm the environment. The primary component of banana peels is carbohydrates, which can be used as a substrate during the fermentation process to produce lactic acid. The fermentation of banana peel flour with Lactobacillus plantarum strain FNCC 0020 was the main focus of this investigation. Variations in the concentrations of the substrate and inoculum as well as the impact of the type of nitrogen on lactic acid concentration were investigated. According to research findings, the big banana peel contains 70.52% carbs, 5.68% soluble protein, 3.115% fat, 6.74% water, 2.395% ash, and 13.38% crude fiber. While the inoculum variable was 0.5% v/v and the best substrate concentration variable was 17.5% w/v, the best lactic acid concentrations were 5.401 g/L and 8.586 g/L, respectively, as determined by HPLC (High-Performance Liquid) analysis. Banana peel flour only includes a modest amount of nitrogen (0.8295%), sulfate (0.037 grams), phosphate (1.6105%), and vitamin B1 (0.2315%), so additional nitrogen sources must be added. The production of lactic acid is shown to increase with the addition of various forms of nitrogen, with ammonium sulfate and ammonium phosphate (2:1) producing the greatest yields of 9.781 g/L and 14.255 g/L, respectively, of lactic acid, which is lower than lactic acid from yeast extract.
植物乳杆菌对香蕉皮的乳酸发酵:底物浓度、接种量和不同氮源的影响
香蕉皮是一种有机废物,专门用作动物饲料,不会危害环境。香蕉皮的主要成分是碳水化合物,在发酵过程中可以作为底物产生乳酸。利用植物乳杆菌菌株FNCC 0020发酵香蕉皮粉是本研究的重点。研究了底物浓度和接种量的变化以及氮的种类对乳酸浓度的影响。研究发现,大香蕉皮的碳水化合物含量为70.52%,可溶性蛋白质含量为5.68%,脂肪含量为3.115%,水分含量为6.74%,灰分含量为2.395%,粗纤维含量为13.38%。在接种量为0.5% v/v、底物浓度为17.5% w/v的条件下,乳酸的最佳浓度分别为5.401 g/L和8.586 g/L。香蕉皮粉只含有适量的氮(0.8295%)、硫酸盐(0.037克)、磷酸盐(1.6105%)和维生素B1(0.2315%),因此必须添加额外的氮源。乳酸的产量随着添加各种形式的氮而增加,其中硫酸铵和磷酸铵(2:1)的乳酸产量最高,分别为9.781 g/L和14.255 g/L,低于酵母提取物的乳酸产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
15
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信