Comparison Between Bayesian and Frequentist Tail Probability Estimates

Nan Shen, B. Gonz'alez, L. Pericchi
{"title":"Comparison Between Bayesian and Frequentist Tail Probability Estimates","authors":"Nan Shen, B. Gonz'alez, L. Pericchi","doi":"10.51387/23-nejsds39","DOIUrl":null,"url":null,"abstract":"Tail probability plays an important part in the extreme value theory. Sometimes the conclusions from two approaches for estimating the tail probability of extreme events, the Bayesian and the frequentist methods, can differ a lot. In 1999, a rainfall that caused more than 30,000 deaths in Venezuela was not captured by the simple frequentist extreme value techniques. However, this catastrophic rainfall was not surprising if the Bayesian inference was used to allow for parameter uncertainty and the full available data was exploited [4].\nIn this paper, we investigate the reasons that the Bayesian estimator of the tail probability is always higher than the frequentist estimator. Sufficient conditions for this phenomenon are established both by using Jensen’s Inequality and by looking at Taylor series approximations, both of which point to the convexity of the distribution function.","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/23-nejsds39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tail probability plays an important part in the extreme value theory. Sometimes the conclusions from two approaches for estimating the tail probability of extreme events, the Bayesian and the frequentist methods, can differ a lot. In 1999, a rainfall that caused more than 30,000 deaths in Venezuela was not captured by the simple frequentist extreme value techniques. However, this catastrophic rainfall was not surprising if the Bayesian inference was used to allow for parameter uncertainty and the full available data was exploited [4]. In this paper, we investigate the reasons that the Bayesian estimator of the tail probability is always higher than the frequentist estimator. Sufficient conditions for this phenomenon are established both by using Jensen’s Inequality and by looking at Taylor series approximations, both of which point to the convexity of the distribution function.
贝叶斯和频率尾部概率估计的比较
尾概率在极值理论中占有重要地位。有时,估计极端事件尾部概率的两种方法(贝叶斯方法和频率方法)得出的结论可能相差很大。1999年,委内瑞拉一场造成3万多人死亡的降雨没有被简单的频率极值技术捕捉到。然而,如果使用贝叶斯推理来考虑参数的不确定性,并充分利用可用的数据[4],那么这种灾难性降雨并不令人惊讶。本文研究了尾概率的贝叶斯估计量总是高于频率估计量的原因。这种现象的充分条件是通过詹森不等式和泰勒级数近似建立的,两者都指向分布函数的凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信