{"title":"A Real-Time Pressure Wave Model for Predicting Engine Knock","authors":"Ruixue C. Li, G. Zhu","doi":"10.1115/dscc2019-9147","DOIUrl":null,"url":null,"abstract":"\n This paper proposes a control-oriented pressure wave model, utilizing outputs of a reaction-based two-zone engine combustion model developed earlier, to accurately predict the key knock characteristics. The model can be used for model-based knock prediction and control. An in-cylinder pressure wave model of oscillation magnitude decay is proposed and simplified to describe pressure oscillations due to knock combustion, and the boundary and initial conditions of the pressure wave model at knock onset are provided by the two-zone reaction-based combustion model. The proposed pressure wave model is calibrated using experimental data, and the chemical kinetic-based Arrhenius integral (ARI) and maximum amplitude of pressure oscillations (MAPO) are used as the evaluation criteria for predicting knock onset and intensity, and the knock frequency is studied with the fast Fourier transform (FFT). The calibrated model is validated for predicting knock onset timing, knock intensity and frequency. Simulation results are compared with the experimental ones to demonstrate the capability of predicting engine knock characteristics by the proposed model.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposes a control-oriented pressure wave model, utilizing outputs of a reaction-based two-zone engine combustion model developed earlier, to accurately predict the key knock characteristics. The model can be used for model-based knock prediction and control. An in-cylinder pressure wave model of oscillation magnitude decay is proposed and simplified to describe pressure oscillations due to knock combustion, and the boundary and initial conditions of the pressure wave model at knock onset are provided by the two-zone reaction-based combustion model. The proposed pressure wave model is calibrated using experimental data, and the chemical kinetic-based Arrhenius integral (ARI) and maximum amplitude of pressure oscillations (MAPO) are used as the evaluation criteria for predicting knock onset and intensity, and the knock frequency is studied with the fast Fourier transform (FFT). The calibrated model is validated for predicting knock onset timing, knock intensity and frequency. Simulation results are compared with the experimental ones to demonstrate the capability of predicting engine knock characteristics by the proposed model.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.