Y. Nykyruy, S. Mudry, Y. Kulyk, V. Prunitsa, A. Borysiuk
{"title":"Magnetic properties and nanocrystallization behavior of Co-based amorphous alloy","authors":"Y. Nykyruy, S. Mudry, Y. Kulyk, V. Prunitsa, A. Borysiuk","doi":"10.15330/pcss.24.1.106-113","DOIUrl":null,"url":null,"abstract":"The magnetic properties of the amorphous Co57Fe5Ni10Si11B17 alloy have been studied by a vibrating sample magnetometer. The temperature dependence of saturation magnetization was measured and the Curie point and crystallization onset temperature were determined as 560 K and 760 K respectively. The coercive force was obtained as 200 A/m and saturation magnetization - 65 Am2 /kg. The alloy was produced in the form of a ribbon thickness of 30 µm using the melt spinning method, and its internal amorphous structure was examined by the X-ray diffraction method. The crystallization behavior of the alloy was studied using series of isothermal annealing of the samples of the alloy at temperatures in the range of 723-1023 K for different exposures (up to 240 minutes) and nanocrystalline phases were detected by the X-ray diffraction analysis.","PeriodicalId":20137,"journal":{"name":"Physics and Chemistry of Solid State","volume":"29 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Solid State","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/pcss.24.1.106-113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The magnetic properties of the amorphous Co57Fe5Ni10Si11B17 alloy have been studied by a vibrating sample magnetometer. The temperature dependence of saturation magnetization was measured and the Curie point and crystallization onset temperature were determined as 560 K and 760 K respectively. The coercive force was obtained as 200 A/m and saturation magnetization - 65 Am2 /kg. The alloy was produced in the form of a ribbon thickness of 30 µm using the melt spinning method, and its internal amorphous structure was examined by the X-ray diffraction method. The crystallization behavior of the alloy was studied using series of isothermal annealing of the samples of the alloy at temperatures in the range of 723-1023 K for different exposures (up to 240 minutes) and nanocrystalline phases were detected by the X-ray diffraction analysis.