On the Parametric Uncertainty of Weakly Reversible Realizations of Kinetic Systems

György Lipták, G. Szederkényi, K. Hangos
{"title":"On the Parametric Uncertainty of Weakly Reversible Realizations of Kinetic Systems","authors":"György Lipták, G. Szederkényi, K. Hangos","doi":"10.1515/493","DOIUrl":null,"url":null,"abstract":"The existence of weakly reversible realizations within a given convex domain is investigated. It is shown that the domain of weakly reversible realizations is convex in the parameter space. A LP-based method of testing if every element of a convex domain admits weakly reversible realizations is proposed. A linear programming method is also presented to compute a stabilizing kinetic feedback controller for polynomial systems with parametric uncertainty. The proposed methods are illustrated using simple examples.","PeriodicalId":13010,"journal":{"name":"Hungarian Journal of Industrial Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Journal of Industrial Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of weakly reversible realizations within a given convex domain is investigated. It is shown that the domain of weakly reversible realizations is convex in the parameter space. A LP-based method of testing if every element of a convex domain admits weakly reversible realizations is proposed. A linear programming method is also presented to compute a stabilizing kinetic feedback controller for polynomial systems with parametric uncertainty. The proposed methods are illustrated using simple examples.
动力学系统弱可逆实现的参数不确定性
研究了给定凸域内弱可逆实现的存在性。证明了弱可逆实现的定义域在参数空间上是凸的。提出了一种基于lp的凸域上每个元素是否允许弱可逆实现的检验方法。对于具有参数不确定性的多项式系统,提出了一种线性规划方法来计算稳定的动力学反馈控制器。用简单的例子说明了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信