Interactive Evaluation of Classifiers Under Limited Resources

Sabit Hassan, Shaden Shaar, B. Raj, Saquib Razak
{"title":"Interactive Evaluation of Classifiers Under Limited Resources","authors":"Sabit Hassan, Shaden Shaar, B. Raj, Saquib Razak","doi":"10.1109/ICMLA.2018.00033","DOIUrl":null,"url":null,"abstract":"In this paper, we propose strategies to estimate the accuracy of classifiers on a dataset when resource limitations restrict the number of instances for which true labels can be obtained. Our target scenarios include situations where the classifier output labels, but no scores, e.g. when the \"classifier\" is not an automated classifier but an inexpert human labeller who only outputs labels. Our objective is to optimally select a subset of the data to obtain true labels for, such that they provide the best estimate of classifier accuracy. We use techniques based on stratified sampling to address this problem. However, stratified sampling poses two challenges: i) how best to stratify the data, and ii) how to allocate samples among the strata. We propose a method of stratifying data and then present two novel interactive algorithms to approximate optimal allocation of samples to the strata. Our proposed methods for stratification and allocation are seen to outperform other popular approaches to the problem.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"173-180"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose strategies to estimate the accuracy of classifiers on a dataset when resource limitations restrict the number of instances for which true labels can be obtained. Our target scenarios include situations where the classifier output labels, but no scores, e.g. when the "classifier" is not an automated classifier but an inexpert human labeller who only outputs labels. Our objective is to optimally select a subset of the data to obtain true labels for, such that they provide the best estimate of classifier accuracy. We use techniques based on stratified sampling to address this problem. However, stratified sampling poses two challenges: i) how best to stratify the data, and ii) how to allocate samples among the strata. We propose a method of stratifying data and then present two novel interactive algorithms to approximate optimal allocation of samples to the strata. Our proposed methods for stratification and allocation are seen to outperform other popular approaches to the problem.
有限资源下分类器的交互评价
在本文中,我们提出了当资源限制限制了可以获得真实标签的实例数量时,估计数据集上分类器准确性的策略。我们的目标场景包括分类器输出标签,但没有分数的情况,例如,当“分类器”不是一个自动分类器,而是一个只输出标签的不专业的人工标记器时。我们的目标是最佳地选择数据的一个子集来获得真正的标签,这样它们就提供了对分类器精度的最佳估计。我们使用基于分层抽样的技术来解决这个问题。然而,分层抽样提出了两个挑战:i)如何最好地分层数据,ii)如何在各层之间分配样本。我们提出了一种分层数据的方法,然后提出了两种新的交互算法来近似最优地分配样品到地层。我们提出的分层和分配方法被认为优于其他流行的方法来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信