Speech emotion detection using time dependent self organizing maps

H. Balti, Adel Said Elmaghraby
{"title":"Speech emotion detection using time dependent self organizing maps","authors":"H. Balti, Adel Said Elmaghraby","doi":"10.1109/ISSPIT.2013.6781926","DOIUrl":null,"url":null,"abstract":"We propose a framework for speech emotion detection that maps acoustic features into high level descriptors that integrates time context. Our framework uses three different algorithms to integrate the temporal context. The first method is based on temporal averaging of the original features. The second algorithm derives the descriptors by clustering the data using self-organizing maps (SOMs) and computing the temporal average of the activity distribution of the original features on the map. The third algorithm uses multi resolution window analysis and SOMs to compute a 2-D map of emotions and derives high level trajectories representing the behavior of the original features on the map. Using a standard emotional database and K-nearest neighbors classifier, we show that the proposed framework is efficient for analysis, visualization and classification of emotions.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"20 1","pages":"000470-000478"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We propose a framework for speech emotion detection that maps acoustic features into high level descriptors that integrates time context. Our framework uses three different algorithms to integrate the temporal context. The first method is based on temporal averaging of the original features. The second algorithm derives the descriptors by clustering the data using self-organizing maps (SOMs) and computing the temporal average of the activity distribution of the original features on the map. The third algorithm uses multi resolution window analysis and SOMs to compute a 2-D map of emotions and derives high level trajectories representing the behavior of the original features on the map. Using a standard emotional database and K-nearest neighbors classifier, we show that the proposed framework is efficient for analysis, visualization and classification of emotions.
基于时间依赖自组织映射的语音情感检测
我们提出了一个语音情感检测框架,将声学特征映射到集成时间上下文的高级描述符中。我们的框架使用三种不同的算法来整合时间上下文。第一种方法是基于原始特征的时间平均。第二种算法通过使用自组织地图(SOMs)对数据进行聚类并计算地图上原始特征活动分布的时间平均值来获得描述符。第三种算法使用多分辨率窗口分析和SOMs来计算情绪的二维地图,并派生出表示地图上原始特征行为的高级轨迹。使用标准的情绪数据库和k近邻分类器,我们证明了所提出的框架对于情绪的分析、可视化和分类是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信