Soil gases, pathfinders for exploration of buried sulphide deposits: insights from laboratory experiments

C. Plet, C. Siégel, R. Noble, R. Anand, M. Woltering, R. Thorne, A. Pagès, S. Spinks
{"title":"Soil gases, pathfinders for exploration of buried sulphide deposits: insights from laboratory experiments","authors":"C. Plet, C. Siégel, R. Noble, R. Anand, M. Woltering, R. Thorne, A. Pagès, S. Spinks","doi":"10.1080/22020586.2019.12073149","DOIUrl":null,"url":null,"abstract":"Summary The future of mineral resources in Australia relies on the discovery of deposits under sedimentary cover. Traditional surface geochemistry techniques are of limited use in this context, and alternative exploration tools such as the detection of soil gases are gaining increasing interest. Previous studies have highlighted the potential of soil gases, such as sulphur gases and soil gas hydrocarbons, for locating buried mineralisation. Here, we performed laboratory weathering experiments of sulphides under sterile and non-sterile conditions to gain insights into the origin of these gases. The experiments revealed that hydrocarbon gases could not be detected, suggesting they commonly originate from microbial ecosystems in the cover and/or in the soil. In addition, equilibrium thermodynamic predictions indicate a larger range of sulphur gases than detected, which suggests the experimental system did not reach thermal equilibrium. Our results also reveal that CS2 is the most abundant gas produced, and could be of particular interest as a pathfinder for mineral exploration through cover.","PeriodicalId":8502,"journal":{"name":"ASEG Extended Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEG Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22020586.2019.12073149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary The future of mineral resources in Australia relies on the discovery of deposits under sedimentary cover. Traditional surface geochemistry techniques are of limited use in this context, and alternative exploration tools such as the detection of soil gases are gaining increasing interest. Previous studies have highlighted the potential of soil gases, such as sulphur gases and soil gas hydrocarbons, for locating buried mineralisation. Here, we performed laboratory weathering experiments of sulphides under sterile and non-sterile conditions to gain insights into the origin of these gases. The experiments revealed that hydrocarbon gases could not be detected, suggesting they commonly originate from microbial ecosystems in the cover and/or in the soil. In addition, equilibrium thermodynamic predictions indicate a larger range of sulphur gases than detected, which suggests the experimental system did not reach thermal equilibrium. Our results also reveal that CS2 is the most abundant gas produced, and could be of particular interest as a pathfinder for mineral exploration through cover.
土壤气体,埋藏硫化物矿床勘探的探路者:来自实验室实验的见解
澳大利亚矿产资源的未来取决于沉积层下矿床的发现。在这种情况下,传统的地表地球化学技术的作用有限,而土壤气体探测等替代勘探工具正日益引起人们的兴趣。以前的研究强调了土壤气体,如硫气体和土壤气体碳氢化合物,在定位埋藏矿化方面的潜力。在这里,我们在无菌和非无菌条件下对硫化物进行了实验室风化实验,以深入了解这些气体的起源。实验表明,烃类气体无法检测到,这表明它们通常来自覆盖层和/或土壤中的微生物生态系统。此外,平衡热力学预测表明,硫气体的范围比检测到的更大,这表明实验系统没有达到热平衡。我们的研究结果还表明,CS2是最丰富的天然气产出,并可能特别感兴趣的探路者通过覆盖进行矿产勘探。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信