A Method to Fabricate Liver Tissue Engineering Scaffold

S. Singare, S. Zhong, Z. Sun
{"title":"A Method to Fabricate Liver Tissue Engineering Scaffold","authors":"S. Singare, S. Zhong, Z. Sun","doi":"10.4028/www.scientific.net/JBBTE.11.73","DOIUrl":null,"url":null,"abstract":"In this paper, the authors describe a rapid prototyping method to produce vascularized tissue such as liver scaffold for tissue engineering applications. A scaffold with an interconnected channel was designed using a CAD environment. The data were transferred to a Polyjet 3D Printing machine (Eden 250, Object, Israel) to generate the models. Based on the 3D Printing model, a PDMS (polydimethyl-silicone) mould was created which can be used to cast the biodegradable material. The advantages and limitations of Rapid Prototyping (RP) techniques as well as the future direction of RP development in tissue engineering scaffold fabrication were reviewed.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"40 1","pages":"73 - 80"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.11.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, the authors describe a rapid prototyping method to produce vascularized tissue such as liver scaffold for tissue engineering applications. A scaffold with an interconnected channel was designed using a CAD environment. The data were transferred to a Polyjet 3D Printing machine (Eden 250, Object, Israel) to generate the models. Based on the 3D Printing model, a PDMS (polydimethyl-silicone) mould was created which can be used to cast the biodegradable material. The advantages and limitations of Rapid Prototyping (RP) techniques as well as the future direction of RP development in tissue engineering scaffold fabrication were reviewed.
一种制备肝组织工程支架的方法
在本文中,作者描述了一种快速成型的方法来生产血管化组织,如肝支架的组织工程应用。在CAD环境下,设计了具有连通通道的支架。数据被传输到Polyjet 3D打印机(Eden 250, Object, Israel)来生成模型。基于3D打印模型,创建了PDMS(聚二甲基硅树脂)模具,可用于铸造可生物降解材料。综述了快速成型技术在组织工程支架制造中的优势和局限性,并展望了快速成型技术在组织工程支架制造中的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信