Fibonacci–Lucas–Pell–Jacobsthal relations

IF 0.3 Q4 MATHEMATICS
R. Frontczak, T. Goy, M. Shattuck
{"title":"Fibonacci–Lucas–Pell–Jacobsthal relations","authors":"R. Frontczak, T. Goy, M. Shattuck","doi":"10.33039/ami.2022.01.002","DOIUrl":null,"url":null,"abstract":"In this paper, we prove several identities involving linear combinations of convolutions of the generalized Fibonacci and Lucas sequences. Our results apply more generally to broader classes of second-order linearly recurrent sequences with constant coefficients. As a consequence, we obtain as special cases many identities relating exactly four sequences amongst the Fibonacci, Lucas, Pell, Pell–Lucas, Jacobsthal, and Jacobsthal–Lucas number sequences. We make use of algebraic arguments to establish our results, frequently employing the Binet-like formulas and generating functions of the corresponding sequences. Finally, our identities above may be extended so that they include only terms whose subscripts belong to a given arithmetic progression of the non-negative integers.","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"20 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2022.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we prove several identities involving linear combinations of convolutions of the generalized Fibonacci and Lucas sequences. Our results apply more generally to broader classes of second-order linearly recurrent sequences with constant coefficients. As a consequence, we obtain as special cases many identities relating exactly four sequences amongst the Fibonacci, Lucas, Pell, Pell–Lucas, Jacobsthal, and Jacobsthal–Lucas number sequences. We make use of algebraic arguments to establish our results, frequently employing the Binet-like formulas and generating functions of the corresponding sequences. Finally, our identities above may be extended so that they include only terms whose subscripts belong to a given arithmetic progression of the non-negative integers.
本文证明了广义Fibonacci和Lucas序列的卷积线性组合的几个恒等式。我们的结果更普遍地适用于更广泛的二阶常系数线性循环序列。作为特例,我们得到了Fibonacci、Lucas、Pell、Pell - Lucas、Jacobsthal和Jacobsthal - Lucas数列中恰好四个数列的恒等式。我们利用代数参数来建立我们的结果,经常使用类比奈公式并生成相应序列的函数。最后,我们可以扩展上面的恒等式,使它们只包含下标属于给定非负整数等差数列的项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信