Generalization of the rate-distortion function for Wyner-Ziv coding of noisy sources in the quadratic-Gaussian case

D. Rebollo-Monedero, B. Girod
{"title":"Generalization of the rate-distortion function for Wyner-Ziv coding of noisy sources in the quadratic-Gaussian case","authors":"D. Rebollo-Monedero, B. Girod","doi":"10.1109/DCC.2005.6","DOIUrl":null,"url":null,"abstract":"We extend the rate-distortion function for Wyner-Ziv coding of noisy sources with quadratic distortion, in the jointly Gaussian case, to more general statistics. It suffices that the noisy observation Z be the sum of a function of the side information Y and independent Gaussian noise, while the source data X must be the sum of a function of Y, a linear function of Z, and a random variable N such that the conditional expectation of N given Y and Z is zero, almost surely. Furthermore, the side information Y may be arbitrarily distributed in any alphabet, discrete or continuous. Under these general conditions, we prove that no rate loss is incurred due to the unavailability of the side information at the encoder. In the noiseless Wyner-Ziv case, i.e., when the source data is directly observed, the assumptions are still less restrictive than those recently established in the literature. We confirm, theoretically and experimentally, the consistency of this analysis with some of the main results on high-rate Wyner-Ziv quantization of noisy sources.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"2 1","pages":"23-32"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2005.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We extend the rate-distortion function for Wyner-Ziv coding of noisy sources with quadratic distortion, in the jointly Gaussian case, to more general statistics. It suffices that the noisy observation Z be the sum of a function of the side information Y and independent Gaussian noise, while the source data X must be the sum of a function of Y, a linear function of Z, and a random variable N such that the conditional expectation of N given Y and Z is zero, almost surely. Furthermore, the side information Y may be arbitrarily distributed in any alphabet, discrete or continuous. Under these general conditions, we prove that no rate loss is incurred due to the unavailability of the side information at the encoder. In the noiseless Wyner-Ziv case, i.e., when the source data is directly observed, the assumptions are still less restrictive than those recently established in the literature. We confirm, theoretically and experimentally, the consistency of this analysis with some of the main results on high-rate Wyner-Ziv quantization of noisy sources.
二次高斯情况下噪声源Wyner-Ziv编码的率失真函数推广
我们将二次失真噪声源的wner - ziv编码的速率失真函数扩展到更一般的统计量。噪声观测值Z是侧信息Y的函数和独立高斯噪声的和就足够了,而源数据X必须是Y的函数、Z的线性函数和随机变量N的和,使得给定Y和Z的N的条件期望几乎肯定为零。此外,边信息Y可以任意分布在任何字母中,离散或连续。在这些一般条件下,我们证明了由于编码器侧信息不可用而不会产生速率损失。在无噪声的Wyner-Ziv案例中,即当源数据被直接观察到时,假设仍然比最近在文献中建立的假设限制性更小。我们从理论上和实验上证实了这一分析与噪声源的高速率Wyner-Ziv量化的一些主要结果的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信