Steady thermal convection representing the ultimate scaling

Shingo Motoki, G. Kawahara, M. Shimizu
{"title":"Steady thermal convection representing the ultimate scaling","authors":"Shingo Motoki, G. Kawahara, M. Shimizu","doi":"10.1098/rsta.2021.0037","DOIUrl":null,"url":null,"abstract":"Nonlinear simple invariant solutions representing the ultimate scaling have been discovered to the Navier–Stokes equations for thermal convection between horizontal no-slip permeable walls with a distance H and a constant temperature difference ΔT. On the permeable walls, the vertical transpiration velocity is assumed to be proportional to the local pressure fluctuations, i.e. w=±βp/ρ (Jiménez et al. 2001 J. Fluid Mech., 442, 89–117. (doi:10.1017/S0022112001004888)). Two-dimensional steady solutions bifurcating from a conduction state have been obtained using a Newton–Krylov iteration up to the Rayleigh number Ra∼108 for the Prandtl number Pr=1, the horizontal period L/H=2 and the permeability parameter βU=0–3, U being the buoyancy-induced terminal velocity. The wall permeability has a significant impact on the onset and the scaling properties of the found steady ‘wall-bounded’ thermal convection. The ultimate scaling Nu∼Ra1/2 has been observed for βU>0 at high Ra, where Nu is the Nusselt number. In the steady ultimate state, large-scale thermal plumes fully extend from one wall to the other, inducing the strong vertical velocity comparable with the terminal velocity U as well as intense temperature variation of O(ΔT) even in the bulk region. As a consequence, the wall-to-wall heat flux scales with UΔT independent of thermal diffusivity, although the heat transfer on the walls is dominated by thermal conduction. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Nonlinear simple invariant solutions representing the ultimate scaling have been discovered to the Navier–Stokes equations for thermal convection between horizontal no-slip permeable walls with a distance H and a constant temperature difference ΔT. On the permeable walls, the vertical transpiration velocity is assumed to be proportional to the local pressure fluctuations, i.e. w=±βp/ρ (Jiménez et al. 2001 J. Fluid Mech., 442, 89–117. (doi:10.1017/S0022112001004888)). Two-dimensional steady solutions bifurcating from a conduction state have been obtained using a Newton–Krylov iteration up to the Rayleigh number Ra∼108 for the Prandtl number Pr=1, the horizontal period L/H=2 and the permeability parameter βU=0–3, U being the buoyancy-induced terminal velocity. The wall permeability has a significant impact on the onset and the scaling properties of the found steady ‘wall-bounded’ thermal convection. The ultimate scaling Nu∼Ra1/2 has been observed for βU>0 at high Ra, where Nu is the Nusselt number. In the steady ultimate state, large-scale thermal plumes fully extend from one wall to the other, inducing the strong vertical velocity comparable with the terminal velocity U as well as intense temperature variation of O(ΔT) even in the bulk region. As a consequence, the wall-to-wall heat flux scales with UΔT independent of thermal diffusivity, although the heat transfer on the walls is dominated by thermal conduction. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.
稳定的热对流代表了最终的尺度
本文发现了水平无滑移壁之间的热对流的Navier-Stokes方程的非线性简单不变解,表示最终尺度。在透水壁上,垂直蒸腾速度假定与局部压力波动成正比,即w=±βp/ρ (jim nez et al. 2001 J.流体力学。, 442, 89-117。(doi: 10.1017 / S0022112001004888))。在普朗特数Pr=1,水平周期L/H=2,渗透率参数βU= 0-3 (U为浮力诱导的终端速度)的条件下,利用牛顿-克雷洛夫迭代得到了瑞利数Ra ~ 108的从导态分叉的二维稳态解。壁面渗透率对稳定“壁面有界”热对流的发生和结垢特性有显著影响。在高Ra下,βU b>的最终标度为Nu ~ Ra1/2,其中Nu为努塞尔数。在稳定的极限状态下,大规模热羽流从一个壁面向另一个壁面充分延伸,产生了与终端速度U相当的强垂直速度,即使在大块区域也产生了强烈的温度变化O(ΔT)。因此,壁面到壁面的热流密度与UΔT无关,尽管壁面上的传热主要是热传导。本文是主题问题“物理流体动力学中的数学问题(第一部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信