Optimal Strategy for Supplier Selection in a Global Supply Chain Using Machine Learning Technique

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Itoua Wanck Eyika Gaida, M. Mittal, A. S. Yadav
{"title":"Optimal Strategy for Supplier Selection in a Global Supply Chain Using Machine Learning Technique","authors":"Itoua Wanck Eyika Gaida, M. Mittal, A. S. Yadav","doi":"10.4018/ijdsst.292449","DOIUrl":null,"url":null,"abstract":"This paper proposes an optimization strategy for the best selection process of suppliers. Based on recent literature reviews, the paper assumes a selection of commonly used variables for selecting suppliers, and using Logistic regression algorithm technique, to build a model of optimization that learns from customer’s requirements and supplier’s data, and then make predictions and recommendations for best suppliers. The supplier selection process can quickly at times, turn into a complex task for decision-makers, to dealing with the growing number of supplier base list. But Logistics regression technique makes the process easier in the ability to efficiently fetch customer’s requirements with the entire supplier base list and determine by predicting a list of potential suppliers meeting the actual requirements. The selected suppliers make up the recommendation list for the best suppliers for the requirements. And finally, graphical representations are given to showcase the framework analysis, variable selection, and other illustrations about the model analysis","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.292449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes an optimization strategy for the best selection process of suppliers. Based on recent literature reviews, the paper assumes a selection of commonly used variables for selecting suppliers, and using Logistic regression algorithm technique, to build a model of optimization that learns from customer’s requirements and supplier’s data, and then make predictions and recommendations for best suppliers. The supplier selection process can quickly at times, turn into a complex task for decision-makers, to dealing with the growing number of supplier base list. But Logistics regression technique makes the process easier in the ability to efficiently fetch customer’s requirements with the entire supplier base list and determine by predicting a list of potential suppliers meeting the actual requirements. The selected suppliers make up the recommendation list for the best suppliers for the requirements. And finally, graphical representations are given to showcase the framework analysis, variable selection, and other illustrations about the model analysis
基于机器学习技术的全球供应链供应商选择最优策略
本文提出了供应商最佳选择过程的优化策略。本文在文献综述的基础上,假设选择常用的供应商变量,利用Logistic回归算法技术,从客户需求和供应商数据中学习,建立优化模型,对最佳供应商进行预测和推荐。供应商选择过程有时会很快变成决策者的复杂任务,以处理越来越多的供应商基础列表。但是,物流回归技术使这一过程更容易,因为它能够有效地从整个供应商基础列表中获取客户的需求,并通过预测满足实际需求的潜在供应商列表来确定。被选中的供应商组成最佳供应商推荐名单,以满足要求。最后,给出了框架分析、变量选择和模型分析的图解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信