An homotopy method for lp regression provably beyond self-concordance and in input-sparsity time

Sébastien Bubeck, Michael B. Cohen, Y. Lee, Yuanzhi Li
{"title":"An homotopy method for lp regression provably beyond self-concordance and in input-sparsity time","authors":"Sébastien Bubeck, Michael B. Cohen, Y. Lee, Yuanzhi Li","doi":"10.1145/3188745.3188776","DOIUrl":null,"url":null,"abstract":"We consider the problem of linear regression where the ℓ2n norm loss (i.e., the usual least squares loss) is replaced by the ℓpn norm. We show how to solve such problems up to machine precision in Õp(n|1/2 − 1/p|) (dense) matrix-vector products and Õp(1) matrix inversions, or alternatively in Õp(n|1/2 − 1/p|) calls to a (sparse) linear system solver. This improves the state of the art for any p∉{1,2,+∞}. Furthermore we also propose a randomized algorithm solving such problems in input sparsity time, i.e., Õp(N + poly(d)) where N is the size of the input and d is the number of variables. Such a result was only known for p=2. Finally we prove that these results lie outside the scope of the Nesterov-Nemirovski’s theory of interior point methods by showing that any symmetric self-concordant barrier on the ℓpn unit ball has self-concordance parameter Ω(n).","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

We consider the problem of linear regression where the ℓ2n norm loss (i.e., the usual least squares loss) is replaced by the ℓpn norm. We show how to solve such problems up to machine precision in Õp(n|1/2 − 1/p|) (dense) matrix-vector products and Õp(1) matrix inversions, or alternatively in Õp(n|1/2 − 1/p|) calls to a (sparse) linear system solver. This improves the state of the art for any p∉{1,2,+∞}. Furthermore we also propose a randomized algorithm solving such problems in input sparsity time, i.e., Õp(N + poly(d)) where N is the size of the input and d is the number of variables. Such a result was only known for p=2. Finally we prove that these results lie outside the scope of the Nesterov-Nemirovski’s theory of interior point methods by showing that any symmetric self-concordant barrier on the ℓpn unit ball has self-concordance parameter Ω(n).
在输入稀疏时间内证明lp回归的一种超越自协调的同伦方法
我们考虑线性回归的问题,其中l2n范数损失(即,通常的最小二乘损失)被lpn范数取代。我们展示了如何在Õp(n|1/2−1/p|)(密集)矩阵向量积和Õp(1)矩阵反转中解决这些问题,或者在Õp(n|1/2−1/p|)调用(稀疏)线性系统求解器中解决这些问题。这提高了任意p∈{1,2,+∞}的技术水平。此外,我们还提出了一个在输入稀疏时间内解决此类问题的随机算法,即Õp(N + poly(d)),其中N是输入的大小,d是变量的数量。只有在p=2时才知道这样的结果。最后,我们证明了这些结果不在Nesterov-Nemirovski的内点法理论的范围之内,证明了在1 pn单位球上的任何对称自协势垒都有自协参数Ω(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信