Mohammd Amine Meraou, Fatimah Alshahrani, I. Almanjahie, M. Attouch
{"title":"The Exponential T-X Gompertz Model for Modeling Real Lifetime Data: Properties and Estimation","authors":"Mohammd Amine Meraou, Fatimah Alshahrani, I. Almanjahie, M. Attouch","doi":"10.12982/cmjs.2023.048","DOIUrl":null,"url":null,"abstract":"In the real world, many applications require enhanced variants of well-known distributions. The new distributions are generally more adaptable for simulating real-world data with high skewness and kurtosis. Choosing the best statistical distribution for modeling data is very important and demanding. In this paper, we provide a new fl exible model for modeling lifetime data that is achieved by adding a component to baseline distributions. The new model has three parameters, known as the exponential T-X Gompertz distribution. Its probability density function could be skewed and unimodal. Reliability, hazard rate, quantile, and the moment generating function are just a few of the distributional properties that can be inferred from the suggested model. To estimate the unknown parameters, maximum likelihood estimation is utilized. In addition, Monte Carlo simulation experiments are performed to evaluate the performance of the maximum likelihood estimators. Finally, two real-world data sets are shown to evaluate the proposed model’s potential with that of various existing models.","PeriodicalId":9884,"journal":{"name":"Chiang Mai Journal of Science","volume":"95 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chiang Mai Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.12982/cmjs.2023.048","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the real world, many applications require enhanced variants of well-known distributions. The new distributions are generally more adaptable for simulating real-world data with high skewness and kurtosis. Choosing the best statistical distribution for modeling data is very important and demanding. In this paper, we provide a new fl exible model for modeling lifetime data that is achieved by adding a component to baseline distributions. The new model has three parameters, known as the exponential T-X Gompertz distribution. Its probability density function could be skewed and unimodal. Reliability, hazard rate, quantile, and the moment generating function are just a few of the distributional properties that can be inferred from the suggested model. To estimate the unknown parameters, maximum likelihood estimation is utilized. In addition, Monte Carlo simulation experiments are performed to evaluate the performance of the maximum likelihood estimators. Finally, two real-world data sets are shown to evaluate the proposed model’s potential with that of various existing models.
期刊介绍:
The Chiang Mai Journal of Science is an international English language peer-reviewed journal which is published in open access electronic format 6 times a year in January, March, May, July, September and November by the Faculty of Science, Chiang Mai University. Manuscripts in most areas of science are welcomed except in areas such as agriculture, engineering and medical science which are outside the scope of the Journal. Currently, we focus on manuscripts in biology, chemistry, physics, materials science and environmental science. Papers in mathematics statistics and computer science are also included but should be of an applied nature rather than purely theoretical. Manuscripts describing experiments on humans or animals are required to provide proof that all experiments have been carried out according to the ethical regulations of the respective institutional and/or governmental authorities and this should be clearly stated in the manuscript itself. The Editor reserves the right to reject manuscripts that fail to do so.