{"title":"Iterated inversion system: an algorithm for efficiently visualizing Kleinian groups and extending the possibilities of fractal art","authors":"Kento Nakamura","doi":"10.1080/17513472.2021.1943998","DOIUrl":null,"url":null,"abstract":"Kleinian group theory is a branch of mathematics. A visualized Kleinian group often presents a beautiful fractal structure and provides clues for understanding Möbius transformations the mathematical properties of the group. However, it often takes much time to render images of Kleinian groups on a computer. Thus, we propose an efficient algorithm for visualizing some kinds of Kleinian groups: the Iterated Inversion System (IIS), which enables us to render images of Kleinian groups composed of inversions as circles or spheres in real-time. Real-time rendering has various applications; for example, the IIS can be used for experimentation in Kleinian group theory and the creation of mathematical art. The algorithm can also be used to draw both two-dimensional and three-dimensional fractals. The algorithm can extend the possibilities of art originating from Kleinian groups. In this paper, we discuss Kleinian fractals from an artistic viewpoint. GRAPHICAL ABSTRACT","PeriodicalId":42612,"journal":{"name":"Journal of Mathematics and the Arts","volume":"38 1","pages":"106 - 136"},"PeriodicalIF":0.3000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and the Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17513472.2021.1943998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
Kleinian group theory is a branch of mathematics. A visualized Kleinian group often presents a beautiful fractal structure and provides clues for understanding Möbius transformations the mathematical properties of the group. However, it often takes much time to render images of Kleinian groups on a computer. Thus, we propose an efficient algorithm for visualizing some kinds of Kleinian groups: the Iterated Inversion System (IIS), which enables us to render images of Kleinian groups composed of inversions as circles or spheres in real-time. Real-time rendering has various applications; for example, the IIS can be used for experimentation in Kleinian group theory and the creation of mathematical art. The algorithm can also be used to draw both two-dimensional and three-dimensional fractals. The algorithm can extend the possibilities of art originating from Kleinian groups. In this paper, we discuss Kleinian fractals from an artistic viewpoint. GRAPHICAL ABSTRACT