S. Usilin, V. Arlazarov, N. S. Rokhlin, S. Rudyka, S. Matveev, A. Zatsarinnyy
{"title":"Training Viola-Jones Detectors for 3D Objects Based on Fully Synthetic Data for Use in Rescue Missions with UAV","authors":"S. Usilin, V. Arlazarov, N. S. Rokhlin, S. Rudyka, S. Matveev, A. Zatsarinnyy","doi":"10.14529/MMP200408","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of training the Viola–Jones detector for 3D objects is considered on the example of an inflatable life raft PSN-10. The detector is trained on a fully synthetic training dataset. The paper discusses in detail the methods of modelling an inflatable life raft, water surface, various weather conditions. As a feature space, we use edge Haar-like features, which allow training the detector that is resistant to various lighting conditions. To increase the computational efficiency, the L1 norm is used to calculate the magnitude of the image gradient. The performance of the trained detector is estimated on real data obtained during the rescue operation of the trawler “Dalniy Vostok”. The proposed method for training the Viola–Jones detectors can be successfully used as a component of hardware and software “assistants” of the UAV.","PeriodicalId":44106,"journal":{"name":"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the South Ural State University Series-Mathematical Modelling Programming & Computer Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/MMP200408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, the problem of training the Viola–Jones detector for 3D objects is considered on the example of an inflatable life raft PSN-10. The detector is trained on a fully synthetic training dataset. The paper discusses in detail the methods of modelling an inflatable life raft, water surface, various weather conditions. As a feature space, we use edge Haar-like features, which allow training the detector that is resistant to various lighting conditions. To increase the computational efficiency, the L1 norm is used to calculate the magnitude of the image gradient. The performance of the trained detector is estimated on real data obtained during the rescue operation of the trawler “Dalniy Vostok”. The proposed method for training the Viola–Jones detectors can be successfully used as a component of hardware and software “assistants” of the UAV.
期刊介绍:
Series «Mathematical Modelling, Programming & Computer Software» of the South Ural State University Bulletin was created in 2008. Nowadays it is published four times a year. The basic goal of the editorial board as well as the editorial commission of series «Mathematical Modelling, Programming & Computer Software» is research promotion in the sphere of mathematical modelling in natural, engineering and economic science. Priority publication right is given to: -the results of high-quality research of mathematical models, revealing less obvious properties; -the results of computational research, containing designs of new computational algorithms relating to mathematical models; -program systems, designed for computational experiments.