Control problem on a rough circular domain and homogenization

Asymptot. Anal. Pub Date : 2019-01-01 DOI:10.3233/asy-191526
S. Aiyappan, Editha C. Jose, Ivy Carol B. Lomerio, A. K. Nandakumaran
{"title":"Control problem on a rough circular domain and homogenization","authors":"S. Aiyappan, Editha C. Jose, Ivy Carol B. Lomerio, A. K. Nandakumaran","doi":"10.3233/asy-191526","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the asymptotic analysis of optimal control problems posed on a rough circular domain. The domain has two parts, namely a fixed outer part and an oscillating inner part. The period of the oscillation is of order ε > 0, a small parameter which approaches zero and the amplitude of the oscillation is fixed. We pose a periodic control on the oscillating part of the domain and study the homogenization of this problem using an unfolding operator suitably defined for this domain. One of the novelties of this paper is that we use the unfolding operator to characterize the optimal control in the non-homogenized level.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"12 1","pages":"19-46"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-191526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is concerned with the asymptotic analysis of optimal control problems posed on a rough circular domain. The domain has two parts, namely a fixed outer part and an oscillating inner part. The period of the oscillation is of order ε > 0, a small parameter which approaches zero and the amplitude of the oscillation is fixed. We pose a periodic control on the oscillating part of the domain and study the homogenization of this problem using an unfolding operator suitably defined for this domain. One of the novelties of this paper is that we use the unfolding operator to characterize the optimal control in the non-homogenized level.
粗糙圆域上的控制问题及均匀化
本文研究粗糙圆域上最优控制问题的渐近分析。该域有两个部分,即固定的外部部分和振荡的内部部分。振荡周期为ε > 0阶,是一个接近于零的小参数,振荡幅度是固定的。我们对该区域的振荡部分进行了周期控制,并利用在该区域上适当定义的展开算子研究了该问题的均匀化问题。本文的一个新颖之处在于我们使用展开算子来表征非均匀水平下的最优控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信