Andrew E. Waters, David Tinapple, Richard Baraniuk
{"title":"BayesRank: A Bayesian Approach to Ranked Peer Grading","authors":"Andrew E. Waters, David Tinapple, Richard Baraniuk","doi":"10.1145/2724660.2724672","DOIUrl":null,"url":null,"abstract":"Advances in online and computer supported education afford exciting opportunities to revolutionize the classroom, while also presenting a number of new challenges not faced in traditional educational settings. Foremost among these challenges is the problem of accurately and efficiently evaluating learner work as the class size grows, which is directly related to the larger goal of providing quality, timely, and actionable formative feedback. Recently there has been a surge in interest in using peer grading methods coupled with machine learning to accurately and fairly evaluate learner work while alleviating the instructor bottleneck and grading overload. Prior work in peer grading almost exclusively focuses on numerically scored grades -- either real-valued or ordinal. In this work, we consider the implications of peer ranking in which learners rank a small subset of peer work from strongest to weakest, and propose new types of computational analyses that can be applied to this ranking data. We adopt a Bayesian approach to the ranked peer grading problem and develop a novel model and method for utilizing ranked peer-grading data. We additionally develop a novel procedure for adaptively identifying which work should be ranked by particular peers in order to dynamically resolve ambiguity in the data and rapidly resolve a clearer picture of learner performance. We showcase our results on both synthetic and several real-world educational datasets.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2724672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Advances in online and computer supported education afford exciting opportunities to revolutionize the classroom, while also presenting a number of new challenges not faced in traditional educational settings. Foremost among these challenges is the problem of accurately and efficiently evaluating learner work as the class size grows, which is directly related to the larger goal of providing quality, timely, and actionable formative feedback. Recently there has been a surge in interest in using peer grading methods coupled with machine learning to accurately and fairly evaluate learner work while alleviating the instructor bottleneck and grading overload. Prior work in peer grading almost exclusively focuses on numerically scored grades -- either real-valued or ordinal. In this work, we consider the implications of peer ranking in which learners rank a small subset of peer work from strongest to weakest, and propose new types of computational analyses that can be applied to this ranking data. We adopt a Bayesian approach to the ranked peer grading problem and develop a novel model and method for utilizing ranked peer-grading data. We additionally develop a novel procedure for adaptively identifying which work should be ranked by particular peers in order to dynamically resolve ambiguity in the data and rapidly resolve a clearer picture of learner performance. We showcase our results on both synthetic and several real-world educational datasets.