An Optimal Algorithm for Sliding Window Order Statistics

Pavel Raykov
{"title":"An Optimal Algorithm for Sliding Window Order Statistics","authors":"Pavel Raykov","doi":"10.4230/LIPIcs.ICDT.2023.5","DOIUrl":null,"url":null,"abstract":"Assume there is a data stream of elements and a window of size m . Sliding window algorithms compute various statistic functions over the last m elements of the data stream seen so far. The time complexity of a sliding window algorithm is measured as the time required to output an updated statistic function value every time a new element is read. For example, it is well known that computing the sliding window maximum/minimum has time complexity O (1) while computing the sliding window median has time complexity O (log m ). In this paper we close the gap between these two cases by (1) presenting an algorithm for computing the sliding window k -th smallest element in O (log k ) time and (2) prove that this time complexity is optimal.","PeriodicalId":90482,"journal":{"name":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","volume":"16 1","pages":"5:1-5:13"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ICDT.2023.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assume there is a data stream of elements and a window of size m . Sliding window algorithms compute various statistic functions over the last m elements of the data stream seen so far. The time complexity of a sliding window algorithm is measured as the time required to output an updated statistic function value every time a new element is read. For example, it is well known that computing the sliding window maximum/minimum has time complexity O (1) while computing the sliding window median has time complexity O (log m ). In this paper we close the gap between these two cases by (1) presenting an algorithm for computing the sliding window k -th smallest element in O (log k ) time and (2) prove that this time complexity is optimal.
滑动窗口序统计量的最优算法
假设有一个元素的数据流和一个大小为m的窗口。滑动窗口算法对到目前为止看到的数据流的最后m个元素计算各种统计函数。滑动窗口算法的时间复杂度是通过每次读取新元素时输出更新的统计函数值所需的时间来衡量的。例如,众所周知,计算滑动窗口最大值/最小值的时间复杂度为O(1),而计算滑动窗口中值的时间复杂度为O (log m)。在本文中,我们通过(1)提出了在O (log k)时间内计算滑动窗口第k个最小元素的算法,(2)证明了这种时间复杂度是最优的,从而缩小了这两种情况之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信