J. Cornelio, Syamil Mohd Razak, Atefeh Jahandideh, B. Jafarpour, Young Cho, Hui-Hai Liu, R. Vaidya
{"title":"Investigating Transfer Learning for Characterization and Performance Prediction in Unconventional Reservoirs","authors":"J. Cornelio, Syamil Mohd Razak, Atefeh Jahandideh, B. Jafarpour, Young Cho, Hui-Hai Liu, R. Vaidya","doi":"10.2118/204563-ms","DOIUrl":null,"url":null,"abstract":"\n Transfer learning is a machine learning concept whereby the knowledge gained (e.g., a model developed) in one task can be transferred (applied) to solve a different but related task. In the context of unconventional reservoirs, the concept can be used to transfer a machine learning model that is learned from data in one field (or shale play) to another, thereby significantly reducing the data needs and efforts to build a new model from scratch. In this work, we study the feasibility of developing deep learning models that can capture and transfer common features in a rich dataset pertaining to a mature unconventional play to enable production prediction in a new unconventional play with limited available data. The focus in this work is on method development using simulated data that correspond to the Bakken and Eagle Ford Shale Plays as two different unconventional plays in the US. We use formation and completion parameter ranges that correspond to the Bakken play with their simulated production responses to explore different approaches for training neural network models that enable transfer learning to predict production responses of input parameters corresponding to the Eagle Ford play (previously unseen input parameters).\n We explore different schemes by accessing the internal components of the model to extrapolate and categorize salient features that are represented in the trained neural network. Ultimately, our goal is to use these new mechanisms to enable effective sharing and reuse of discovered features from one unconventional well to another. To extract salient trends from formation and completion input parameters and their corresponding simulated production responses, we use deep learning architectures that consist of convolutional encoder-decoder networks. The architecture is then trained with rich simulated data from one field to generate a robust mapping between the input and the output feature spaces. The \"learned\" parameters from this network can then be \"transferred\" to develop a different predictive model for another field that may lack sufficient historical data.\n The results show that using standard training approaches, a neural network model that is trained with sufficiently large data samples from Bakken could produce reliable prediction models for typical wells that may be found in that field. The same neural network, however, could not produce reliable predictions for a typical Eagle Ford well. Furthermore, we observe that a neural network trained with insufficient data samples from Eagle Ford produces a poor prediction model for typical wells that may be found in Eagle Ford. However, when extrapolated feature components of the Bakken neural network were integrated into the training process of the Eagle Ford neural network, the resulting predictions for typical Eagle Ford wells improved significantly. Moreover, we observe that the ability to transfer learning can improve when specialized training strategies are adopted to enable transfer learning. Using several numerical experiments, the paper presents and assesses various transfer learning strategies to predict the production performance of unconventional wells in a new area with limited information by integrating knowledge from more mature plays.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204563-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Transfer learning is a machine learning concept whereby the knowledge gained (e.g., a model developed) in one task can be transferred (applied) to solve a different but related task. In the context of unconventional reservoirs, the concept can be used to transfer a machine learning model that is learned from data in one field (or shale play) to another, thereby significantly reducing the data needs and efforts to build a new model from scratch. In this work, we study the feasibility of developing deep learning models that can capture and transfer common features in a rich dataset pertaining to a mature unconventional play to enable production prediction in a new unconventional play with limited available data. The focus in this work is on method development using simulated data that correspond to the Bakken and Eagle Ford Shale Plays as two different unconventional plays in the US. We use formation and completion parameter ranges that correspond to the Bakken play with their simulated production responses to explore different approaches for training neural network models that enable transfer learning to predict production responses of input parameters corresponding to the Eagle Ford play (previously unseen input parameters).
We explore different schemes by accessing the internal components of the model to extrapolate and categorize salient features that are represented in the trained neural network. Ultimately, our goal is to use these new mechanisms to enable effective sharing and reuse of discovered features from one unconventional well to another. To extract salient trends from formation and completion input parameters and their corresponding simulated production responses, we use deep learning architectures that consist of convolutional encoder-decoder networks. The architecture is then trained with rich simulated data from one field to generate a robust mapping between the input and the output feature spaces. The "learned" parameters from this network can then be "transferred" to develop a different predictive model for another field that may lack sufficient historical data.
The results show that using standard training approaches, a neural network model that is trained with sufficiently large data samples from Bakken could produce reliable prediction models for typical wells that may be found in that field. The same neural network, however, could not produce reliable predictions for a typical Eagle Ford well. Furthermore, we observe that a neural network trained with insufficient data samples from Eagle Ford produces a poor prediction model for typical wells that may be found in Eagle Ford. However, when extrapolated feature components of the Bakken neural network were integrated into the training process of the Eagle Ford neural network, the resulting predictions for typical Eagle Ford wells improved significantly. Moreover, we observe that the ability to transfer learning can improve when specialized training strategies are adopted to enable transfer learning. Using several numerical experiments, the paper presents and assesses various transfer learning strategies to predict the production performance of unconventional wells in a new area with limited information by integrating knowledge from more mature plays.