Life as a Guide to its Own Origins

IF 11.2 1区 生物学 Q1 ECOLOGY
S. Harrison, Hanadi Rammu, Feixue Liu, Aaron Halpern, Raquel Nunes Palmeira, N. Lane
{"title":"Life as a Guide to its Own Origins","authors":"S. Harrison, Hanadi Rammu, Feixue Liu, Aaron Halpern, Raquel Nunes Palmeira, N. Lane","doi":"10.1146/annurev-ecolsys-110421-101509","DOIUrl":null,"url":null,"abstract":"The origin of life entails a continuum from simple prebiotic chemistry to cells with genes and molecular machines. Using life as a guide to this continuum, we consider how selection could promote increased complexity before the emergence of genes. Structured, far-from-equilibrium environments such as hydrothermal systems drive the reaction between CO2 and H2 to form organics that self-organize into protocells. CO2 fixation within protocells generates a reaction network with a topology that prefigures the universal core of metabolism. Positive feedback loops amplify flux through this network, giving a metabolic heredity that promotes growth. Patterns in the genetic code show that genes and proteins arose through direct biophysical interactions between amino acids and nucleotides in this protometabolic network. Random genetic sequences template nonrandom peptides, producing selectable function in growing protocells. This context-dependent emergence of information gives rise seamlessly to an autotrophic last universal common ancestor. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"90 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Ecology, Evolution, and Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-ecolsys-110421-101509","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The origin of life entails a continuum from simple prebiotic chemistry to cells with genes and molecular machines. Using life as a guide to this continuum, we consider how selection could promote increased complexity before the emergence of genes. Structured, far-from-equilibrium environments such as hydrothermal systems drive the reaction between CO2 and H2 to form organics that self-organize into protocells. CO2 fixation within protocells generates a reaction network with a topology that prefigures the universal core of metabolism. Positive feedback loops amplify flux through this network, giving a metabolic heredity that promotes growth. Patterns in the genetic code show that genes and proteins arose through direct biophysical interactions between amino acids and nucleotides in this protometabolic network. Random genetic sequences template nonrandom peptides, producing selectable function in growing protocells. This context-dependent emergence of information gives rise seamlessly to an autotrophic last universal common ancestor. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
生命的起源指南
生命的起源需要一个连续体,从简单的益生元化学到具有基因和分子机器的细胞。以生命为向导,我们考虑在基因出现之前,选择如何促进复杂性的增加。结构化的、远离平衡的环境,如热液系统,驱动CO2和H2之间的反应,形成自组织成原始细胞的有机物。原始细胞内的二氧化碳固定产生了一个反应网络,其拓扑结构预示着新陈代谢的普遍核心。正反馈循环通过这个网络放大通量,产生促进生长的代谢遗传。遗传密码的模式表明,基因和蛋白质是通过氨基酸和核苷酸在这个原代谢网络中的直接生物物理相互作用产生的。随机基因序列模板非随机肽,在生长的原始细胞中产生可选择的功能。这种依赖于上下文的信息的出现无缝地产生了自养的最后一个普遍共同祖先。预计《生态、进化和分类学年度评论》第54卷的最终在线出版日期是2023年11月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.90
自引率
1.70%
发文量
21
期刊介绍: The Annual Review of Ecology, Evolution, and Systematics is a scholarly publication that has been in circulation since 1970. It focuses on important advancements in the areas of ecology, evolutionary biology, and systematics, with relevance to all forms of life on Earth. The journal features essay reviews that encompass various topics such as phylogeny, speciation, molecular evolution, behavior, evolutionary physiology, population dynamics, ecosystem processes, and applications in invasion biology, conservation, and environmental management. Recently, the current volume of the journal transitioned from a subscription-based model to open access through the Annual Reviews' Subscribe to Open program. Consequently, all articles published in the current volume are now available under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信