Self-potential Data Interpretation for Two Co-axial Structures Utilizing the RMS Parameter

IF 1 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL
K. Essa, Z. E. Diab, Mahmoud Elhussein
{"title":"Self-potential Data Interpretation for Two Co-axial Structures Utilizing the RMS Parameter","authors":"K. Essa, Z. E. Diab, Mahmoud Elhussein","doi":"10.2113/JEEG19-017","DOIUrl":null,"url":null,"abstract":"We have developed an algorithm to obtain the model parameters for two co-axial structures from self-potential data. The method uses the first numerical horizontal derivatives calculated from the observed self-potential anomaly employing filters of sequential window lengths (s-values) so as to gauge the model constraints for the shallow and deep structures. In addition, this algorithm uses a standard inversion method for solving a non-linear equation based on the lowest root-mean-square (RMS) error of the estimated model parameters. The body constraints are the depth, polarization angle and electric dipole moment of each structure. Our approach models the self-potential dataset as an aggregation of spheres, horizontal cylinders, and vertical cylinders. These simple bodies are used to approximate, without a priori expectations, the furthermost plausible position and/or area of intersection. In other words, the bodies are used to estimate the true values of the source parameters for the two-co-axial bodies at different s-values. Minimizing the RMS error has the advantage of optimizing all model factors. The proposed technique is tested using a numerical model with and without noise and on self-potential field data acquired at a site in Germany. In all cases, the assessed body parameters are reasonable approximations of the known values.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"12 1","pages":"15-23"},"PeriodicalIF":1.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/JEEG19-017","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 4

Abstract

We have developed an algorithm to obtain the model parameters for two co-axial structures from self-potential data. The method uses the first numerical horizontal derivatives calculated from the observed self-potential anomaly employing filters of sequential window lengths (s-values) so as to gauge the model constraints for the shallow and deep structures. In addition, this algorithm uses a standard inversion method for solving a non-linear equation based on the lowest root-mean-square (RMS) error of the estimated model parameters. The body constraints are the depth, polarization angle and electric dipole moment of each structure. Our approach models the self-potential dataset as an aggregation of spheres, horizontal cylinders, and vertical cylinders. These simple bodies are used to approximate, without a priori expectations, the furthermost plausible position and/or area of intersection. In other words, the bodies are used to estimate the true values of the source parameters for the two-co-axial bodies at different s-values. Minimizing the RMS error has the advantage of optimizing all model factors. The proposed technique is tested using a numerical model with and without noise and on self-potential field data acquired at a site in Germany. In all cases, the assessed body parameters are reasonable approximations of the known values.
利用RMS参数解释两种共轴结构的自电位
我们开发了一种从自电位数据中获得两种共轴结构模型参数的算法。该方法采用序列窗长(s值)滤波,从观测到的自势异常计算第一次数值水平导数,从而判断浅层和深部构造的模型约束条件。此外,该算法采用基于模型参数估计的最小均方根误差(RMS)的标准反演方法求解非线性方程。体约束是每个结构的深度、极化角和电偶极矩。我们的方法将自势数据集建模为球体、水平圆柱体和垂直圆柱体的集合。这些简单的物体被用来在没有先验期望的情况下,逼近最可能的交点位置和/或面积。换句话说,用这些体来估计两同轴体在不同s值下的源参数的真实值。最小化均方根误差具有优化所有模型因素的优点。利用德国某厂址的自电位场数据,对该方法进行了有噪声和无噪声的数值模型测试。在所有情况下,评估的物体参数都是已知值的合理近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental and Engineering Geophysics
Journal of Environmental and Engineering Geophysics 地学-地球化学与地球物理
CiteScore
2.70
自引率
0.00%
发文量
13
审稿时长
6 months
期刊介绍: The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信