Entanglement dynamics in the three-dimensional Anderson model

Yang Zhao, Dingyi Feng, Yongbo Hu, Shutong Guo, J. Sirker
{"title":"Entanglement dynamics in the three-dimensional Anderson model","authors":"Yang Zhao, Dingyi Feng, Yongbo Hu, Shutong Guo, J. Sirker","doi":"10.1103/physrevb.102.195132","DOIUrl":null,"url":null,"abstract":"We numerically study the entanglement dynamics of free fermions on a cubic lattice with potential disorder following a quantum quench. We focus, in particular, on the metal-insulator transition at a critical disorder strength and compare the results to the putative many-body localization (MBL) transition in interacting one-dimensional systems. We find that at the transition point the entanglement entropy grows logarithmically with time $t$ while the number entropy grows $\\sim\\ln\\ln t$. This is exactly the same scaling recently found in the MBL phase of the Heisenberg chain with random magnetic fields suggesting that the MBL phase might be more akin to an extended critical regime with both localized and delocalized states rather than a fully localized phase. We also show that the experimentally easily accessible number entropy can be used to bound the full entanglement entropy of the Anderson model and that the critical properties at the metal-insulator transition obtained from entanglement measures are consistent with those obtained by other probes.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.195132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We numerically study the entanglement dynamics of free fermions on a cubic lattice with potential disorder following a quantum quench. We focus, in particular, on the metal-insulator transition at a critical disorder strength and compare the results to the putative many-body localization (MBL) transition in interacting one-dimensional systems. We find that at the transition point the entanglement entropy grows logarithmically with time $t$ while the number entropy grows $\sim\ln\ln t$. This is exactly the same scaling recently found in the MBL phase of the Heisenberg chain with random magnetic fields suggesting that the MBL phase might be more akin to an extended critical regime with both localized and delocalized states rather than a fully localized phase. We also show that the experimentally easily accessible number entropy can be used to bound the full entanglement entropy of the Anderson model and that the critical properties at the metal-insulator transition obtained from entanglement measures are consistent with those obtained by other probes.
三维Anderson模型中的纠缠动力学
本文用数值方法研究了量子猝灭后自由费米子在位无序立方晶格上的纠缠动力学。我们特别关注临界无序强度下的金属-绝缘体跃迁,并将结果与相互作用的一维系统中假定的多体局部化(MBL)跃迁进行比较。我们发现,在过渡点,纠缠熵随时间呈对数增长$t$,而数熵增长$\sim\ln\ln t$。这与最近在海森堡链的随机磁场的MBL相中发现的尺度完全相同,这表明MBL相可能更类似于具有局域和非局域状态的扩展临界状态,而不是完全局域相。我们还证明了实验上容易获得的数熵可以用来约束安德森模型的全部纠缠熵,并且从纠缠测度中得到的金属-绝缘体跃迁的临界性质与其他探针得到的一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信