Investigation of the Optical, Structural and Compositional Properties of Electrodeposited Lead Manganese Sulfide (PbMnS) Thin Films for Possible Device Applications

Laz Nnaedozie Ezenwaka, Augustine Nwode Nwori, Ifeyinwa Euphemia Ottih, Ngozi Agatha Okereke, Nonso Livinus Okoli
{"title":"Investigation of the Optical, Structural and Compositional Properties of Electrodeposited Lead Manganese Sulfide (PbMnS) Thin Films for Possible Device Applications","authors":"Laz Nnaedozie Ezenwaka, Augustine Nwode Nwori, Ifeyinwa Euphemia Ottih, Ngozi Agatha Okereke, Nonso Livinus Okoli","doi":"10.37256/nat.3120221226","DOIUrl":null,"url":null,"abstract":"The properties of PbMnS semiconductor thin films deposited on fluorine-doped tin oxide (FTO) substrate using an electrodeposition method are investigated to determine their possible device applications. Lead acetate, manganese sulfate, and thiourea were used as precursors for sources of lead, manganese, and sulfur ions respectively. The concentration of lead, manganese, and sulfur ions sources with deposition voltage of 1.8 V was kept constant. The films were deposited using three electrodes system of electrodeposition method by varying deposition time. The films were characterized for optical, structural, morphological, and compositional properties and results showed that the absorbance, refractive index, and optical conductivity of the films are high in the visible (VIS) and near-infrared (NIR) regions but decreases in the NIR. These three properties initially increased with an increase in deposition time up to a time of 70 s which has the highest values of these properties before decreasing to lower values. The transmittance and extinction coefficient of the films are low in both VIS and NIR regions. The bandgap energy of PbS was found to be blue shifted with values of 1.51 eV, 1.54 eV, 1.60 eV, 1.45 eV, and 1.35 eV for the films deposited at 30 s, 50 s, 70 s, 90 s, and 110 s respectively. XRD analysis showed that the films are crystalline with sharp peaks positions indexable to crystalline planes of (111), (200), (211), (220), (311) and (400) with average crystallite size in the range of 16.110 nm to 17.218 nm. Energy-dispersive X-ray spectroscopy (EDX) results showed that the films are composed of lead, manganese, and sulfur but there are some impurity elements present mostly as a result of the substrate used. These properties exhibited by the deposited thin films of PbMnS showed that they can be used for many optoelectronic applications such as photovoltaic cells, sensors, photoconductors, etc.","PeriodicalId":18798,"journal":{"name":"Nanoarchitectonics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoarchitectonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/nat.3120221226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The properties of PbMnS semiconductor thin films deposited on fluorine-doped tin oxide (FTO) substrate using an electrodeposition method are investigated to determine their possible device applications. Lead acetate, manganese sulfate, and thiourea were used as precursors for sources of lead, manganese, and sulfur ions respectively. The concentration of lead, manganese, and sulfur ions sources with deposition voltage of 1.8 V was kept constant. The films were deposited using three electrodes system of electrodeposition method by varying deposition time. The films were characterized for optical, structural, morphological, and compositional properties and results showed that the absorbance, refractive index, and optical conductivity of the films are high in the visible (VIS) and near-infrared (NIR) regions but decreases in the NIR. These three properties initially increased with an increase in deposition time up to a time of 70 s which has the highest values of these properties before decreasing to lower values. The transmittance and extinction coefficient of the films are low in both VIS and NIR regions. The bandgap energy of PbS was found to be blue shifted with values of 1.51 eV, 1.54 eV, 1.60 eV, 1.45 eV, and 1.35 eV for the films deposited at 30 s, 50 s, 70 s, 90 s, and 110 s respectively. XRD analysis showed that the films are crystalline with sharp peaks positions indexable to crystalline planes of (111), (200), (211), (220), (311) and (400) with average crystallite size in the range of 16.110 nm to 17.218 nm. Energy-dispersive X-ray spectroscopy (EDX) results showed that the films are composed of lead, manganese, and sulfur but there are some impurity elements present mostly as a result of the substrate used. These properties exhibited by the deposited thin films of PbMnS showed that they can be used for many optoelectronic applications such as photovoltaic cells, sensors, photoconductors, etc.
电沉积硫化铅锰薄膜的光学、结构和组成特性研究及其在器件中的应用
研究了电沉积法沉积在氟掺杂氧化锡(FTO)衬底上的PbMnS半导体薄膜的性能,以确定其可能的器件应用。乙酸铅、硫酸锰和硫脲分别作为铅、锰和硫离子来源的前驱体。保持沉积电压为1.8 V的铅、锰、硫离子源浓度不变。通过改变沉积时间,采用电沉积法的三电极体系沉积薄膜。对薄膜的光学、结构、形态和组成进行了表征,结果表明,薄膜的吸光度、折射率和光学导电性在可见光(VIS)和近红外(NIR)区域较高,而在近红外(NIR)区域较低。随着沉积时间的增加,这三种性能开始增加,到70 s时,这些性能达到最高值,然后逐渐降低。薄膜的透过率和消光系数在可见光区和近红外区都很低。在30s、50s、70s、90s和110s沉积的薄膜中,PbS的能带能分别发生了1.51 eV、1.54 eV、1.60 eV、1.45 eV和1.35 eV的蓝移。XRD分析表明,薄膜呈结晶状,峰位尖锐,可指向(111)、(200)、(211)、(220)、(311)和(400)晶面,平均晶粒尺寸在16.110 ~ 17.218 nm之间。能量色散x射线光谱(EDX)结果表明,薄膜主要由铅、锰和硫组成,但主要由于所使用的衬底而存在一些杂质元素。这些特性表明,PbMnS薄膜可用于光伏电池、传感器、光电导体等光电子领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信