Haoyi Zheng, C. Dimayuga, Alhakam Hudaihed, S. Katz
{"title":"Effect of Dexrazoxane on Homocysteine-Induced Endothelial Dysfunction in Normal Subjects","authors":"Haoyi Zheng, C. Dimayuga, Alhakam Hudaihed, S. Katz","doi":"10.1161/01.ATV.0000023187.25914.5B","DOIUrl":null,"url":null,"abstract":"Objective—Dexrazoxane is an antioxidant prodrug that on hydrolysis is converted into an intracellular iron chelator. We hypothesized that the antioxidant effects of dexrazoxane would prevent homocysteine-induced endothelial dysfunction in the brachial artery of normal human subjects. Methods and Results—Ten healthy volunteers completed a randomized, double-blind, crossover study. Plasma homocysteine levels and brachial artery endothelium-dependent (flow-mediated dilation [FMD]) and endothelium-independent (sublingual nitroglycerin) responses were measured before and 4 hours after ingestion of l-methionine (100 mg/kg), preceded by intravenous administration of dexrazoxane (500 mg/m2) or placebo over 30 minutes. After placebo, oral methionine increased plasma homocysteine (from 5.1±0.4 &mgr;mol/L at baseline to 14.2±1.3 &mgr;mol/L at 4 hours, P <0.001) and decreased FMD (from 3.8±0.7% at baseline to 1.2±0.5% at 4 hours, P =0.02). Dexrazoxane did not change homocysteine concentrations after methionine administration (14.9±1.1 &mgr;mol/L at 4 hours, P =0.29 versus placebo) but did completely abrogate the homocysteine-induced reduction in FMD (from 3.5±0.5% at baseline to 5.9±1.1% at 4 hours, P <0.01 versus placebo). Endothelium-independent responses to sublingual nitroglycerin did not differ after the administration of placebo and dexrazoxane. Conclusions—Administration of the novel antioxidant agent dexrazoxane prevents homocysteine-induced impairment of vascular endothelial function in the brachial artery of healthy subjects.","PeriodicalId":8418,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","volume":"56 1","pages":"e1-e4"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.ATV.0000023187.25914.5B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Objective—Dexrazoxane is an antioxidant prodrug that on hydrolysis is converted into an intracellular iron chelator. We hypothesized that the antioxidant effects of dexrazoxane would prevent homocysteine-induced endothelial dysfunction in the brachial artery of normal human subjects. Methods and Results—Ten healthy volunteers completed a randomized, double-blind, crossover study. Plasma homocysteine levels and brachial artery endothelium-dependent (flow-mediated dilation [FMD]) and endothelium-independent (sublingual nitroglycerin) responses were measured before and 4 hours after ingestion of l-methionine (100 mg/kg), preceded by intravenous administration of dexrazoxane (500 mg/m2) or placebo over 30 minutes. After placebo, oral methionine increased plasma homocysteine (from 5.1±0.4 &mgr;mol/L at baseline to 14.2±1.3 &mgr;mol/L at 4 hours, P <0.001) and decreased FMD (from 3.8±0.7% at baseline to 1.2±0.5% at 4 hours, P =0.02). Dexrazoxane did not change homocysteine concentrations after methionine administration (14.9±1.1 &mgr;mol/L at 4 hours, P =0.29 versus placebo) but did completely abrogate the homocysteine-induced reduction in FMD (from 3.5±0.5% at baseline to 5.9±1.1% at 4 hours, P <0.01 versus placebo). Endothelium-independent responses to sublingual nitroglycerin did not differ after the administration of placebo and dexrazoxane. Conclusions—Administration of the novel antioxidant agent dexrazoxane prevents homocysteine-induced impairment of vascular endothelial function in the brachial artery of healthy subjects.