Bond behavior of recycled coarse aggregate concrete with rebar after freeze–thaw cycles: Finite element nonlinear analysis

IF 2.4 Q2 ENGINEERING, MECHANICAL
W. Su, Huibin Sun, Yiyun Wang, Tian Su
{"title":"Bond behavior of recycled coarse aggregate concrete with rebar after freeze–thaw cycles: Finite element nonlinear analysis","authors":"W. Su, Huibin Sun, Yiyun Wang, Tian Su","doi":"10.1515/nleng-2022-0032","DOIUrl":null,"url":null,"abstract":"Abstract In this article, the bond performance of recycled coarse aggregate concrete with rebar after freeze–thaw cycles is analyzed by the ABAQUS finite element method. The result shows that the finite element simulation value of the ultimate bond strength of recycled aggregate concrete specimens is in good agreement with the experimental value, while the agreement between the finite element simulation value of the peak bond slip of recycled aggregate concrete specimens and the experimental value is low; the bond strength between rebar and recycled aggregate concrete increased with the increase of concrete strength and concrete cover depth; the calculation formula for the bond strength between recycled aggregate concrete specimens with different concrete strengths and different concrete cover depth after freeze and thaw cycles are obtained.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, the bond performance of recycled coarse aggregate concrete with rebar after freeze–thaw cycles is analyzed by the ABAQUS finite element method. The result shows that the finite element simulation value of the ultimate bond strength of recycled aggregate concrete specimens is in good agreement with the experimental value, while the agreement between the finite element simulation value of the peak bond slip of recycled aggregate concrete specimens and the experimental value is low; the bond strength between rebar and recycled aggregate concrete increased with the increase of concrete strength and concrete cover depth; the calculation formula for the bond strength between recycled aggregate concrete specimens with different concrete strengths and different concrete cover depth after freeze and thaw cycles are obtained.
含钢筋再生粗骨料混凝土冻融循环后的粘结性能:有限元非线性分析
摘要本文采用ABAQUS有限元法对加筋再生粗骨料混凝土冻融循环后的粘结性能进行了分析。结果表明:再生骨料混凝土试件粘结极限强度的有限元模拟值与试验值吻合较好,而再生骨料混凝土试件粘结滑移峰值的有限元模拟值与试验值吻合较低;钢筋与再生骨料混凝土的粘结强度随混凝土强度和混凝土覆盖深度的增加而增大;得到了不同混凝土强度、不同混凝土覆盖深度的再生骨料混凝土试件冻融循环后粘结强度的计算公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
3.60%
发文量
49
审稿时长
44 weeks
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信