The formation of astrophysical Mg-rich silicate dust

Q2 Physics and Astronomy
Christopher M. Mauney, Davide Lazzati
{"title":"The formation of astrophysical Mg-rich silicate dust","authors":"Christopher M. Mauney,&nbsp;Davide Lazzati","doi":"10.1016/j.molap.2018.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>We present new results for ground-state candidate energies of Mg-rich olivine (MRO) clusters and use the binding energies of these clusters to determine their nucleation rates in stellar outflows, with particular interest in the environments of core-collapse supernovae (CCSNe). Low-lying structures of clusters (Mg<sub>2</sub>SiO<sub>4</sub>)<sub><em>n</em></sub> 2 ≤ <em>n</em> ≤ 13 are determined from a modified minima hopping algorithm using an empirical silicate potential in the Buckingham form. These configurations are further refined and optimized using the density functional theory code Quantum Espresso. Utilizing atomistic nucleation theory, we determine the critical size and nucleation rates of these clusters. We find that configurations and binding energies in this regime are very dissimilar from those of the bulk lattice. Clusters grow with SiO<sub>4</sub>–MgO layering and exhibit only global, rather than local, symmetries. When compared to classical nucleation theory we find suppressed nucleation rates at most temperatures and pressures, with enhanced nucleation rates at very large pressures. This implies a slower progression of silicate dust formation in stellar environments than previously assumed.</p></div>","PeriodicalId":44164,"journal":{"name":"Molecular Astrophysics","volume":"12 ","pages":"Pages 1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molap.2018.03.002","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405675817300283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 10

Abstract

We present new results for ground-state candidate energies of Mg-rich olivine (MRO) clusters and use the binding energies of these clusters to determine their nucleation rates in stellar outflows, with particular interest in the environments of core-collapse supernovae (CCSNe). Low-lying structures of clusters (Mg2SiO4)n 2 ≤ n ≤ 13 are determined from a modified minima hopping algorithm using an empirical silicate potential in the Buckingham form. These configurations are further refined and optimized using the density functional theory code Quantum Espresso. Utilizing atomistic nucleation theory, we determine the critical size and nucleation rates of these clusters. We find that configurations and binding energies in this regime are very dissimilar from those of the bulk lattice. Clusters grow with SiO4–MgO layering and exhibit only global, rather than local, symmetries. When compared to classical nucleation theory we find suppressed nucleation rates at most temperatures and pressures, with enhanced nucleation rates at very large pressures. This implies a slower progression of silicate dust formation in stellar environments than previously assumed.

天体物理学上富镁硅酸盐尘埃的形成
我们提出了富镁橄榄石(MRO)星团基态候选能量的新结果,并使用这些星团的结合能来确定它们在恒星流出物中的成核速率,对核心坍缩超新星(CCSNe)的环境特别感兴趣。(Mg2SiO4)簇n2 ≤ n ≤ 13的低洼结构使用白金汉形式的经验硅酸盐势,通过改进的最小跳变算法确定。这些配置进一步细化和优化使用密度功能理论代码量子浓缩。利用原子成核理论,我们确定了这些团簇的临界尺寸和成核速率。我们发现这种结构的构型和结合能与体晶格的构型和结合能非常不同。团簇随着SiO4-MgO分层而生长,并且只表现出全局对称性,而不是局部对称性。与经典成核理论相比,我们发现在大多数温度和压力下,成核速率被抑制,而在非常大的压力下,成核速率被提高。这意味着在恒星环境中硅酸盐尘埃形成的进程比之前假设的要慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Astrophysics
Molecular Astrophysics ASTRONOMY & ASTROPHYSICS-
自引率
0.00%
发文量
0
期刊介绍: Molecular Astrophysics is a peer-reviewed journal containing full research articles, selected review articles, and thematic issues. Molecular Astrophysics is a new journal where researchers working in planetary and exoplanetary science, astrochemistry, astrobiology, spectroscopy, physical chemistry and chemical physics can meet and exchange their ideas. Understanding the origin and evolution of interstellar and circumstellar molecules is key to understanding the Universe around us and our place in it and has become a fundamental goal of modern astrophysics. Molecular Astrophysics aims to provide a platform for scientists studying the chemical processes that form and dissociate molecules, and control chemical abundances in the universe, particularly in Solar System objects including planets, moons, and comets, in the atmospheres of exoplanets, as well as in regions of star and planet formation in the interstellar medium of galaxies. Observational studies of the molecular universe are driven by a range of new space missions and large-scale scale observatories opening up. With the Spitzer Space Telescope, the Herschel Space Observatory, the Atacama Large Millimeter/submillimeter Array (ALMA), NASA''s Kepler mission, the Rosetta mission, and more major future facilities such as NASA''s James Webb Space Telescope and various missions to Mars, the journal taps into the expected new insights and the need to bring the various communities together on one platform. The journal aims to cover observational, laboratory as well as computational results in the galactic, extragalactic and intergalactic areas of our universe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信