Energetic, Exergetic, Environmental, and Economic Assessment of a Cascade Refrigeration System Operating with Four Different Ecological Refrigerant Pairs

IF 0.8 Q4 THERMODYNAMICS
Cleison Henrique de Paula, W. M. Duarte, Thiago Torres Martins Rocha, Raphael Nunes de Oliveira, A. Maia
{"title":"Energetic, Exergetic, Environmental, and Economic Assessment of a Cascade Refrigeration System Operating with Four Different Ecological Refrigerant Pairs","authors":"Cleison Henrique de Paula, W. M. Duarte, Thiago Torres Martins Rocha, Raphael Nunes de Oliveira, A. Maia","doi":"10.1142/s2010132521500255","DOIUrl":null,"url":null,"abstract":"In this work, a cascade refrigeration system operating with four different ecological refrigerant pairs was modeled. This system uses R744 (Carbon dioxide) in the low-temperature cycle and operates with R290 (propane), R1234yf (2,3,3,3-tetrafluoropropene), R152a (1,1-difluorethane), and R717 (ammonia) in the high-temperature cycle. Energetic, exergetic, environmental, and economic performance of the cascade system was investigated to determine the most appropriate ecological refrigerant couple. The parameters used in each mentioned performance were COP (Coefficient of Performance), [Formula: see text] (Exergy Efficiency), TEWI (Total Equivalent Warming Impact), ECOP (Ecological coefficient of performance), and [Formula: see text] (Total plant cost rate), respectively. The results showed that the cascade refrigeration system operating with R744/R717 provided the best performance for the thermodynamic conditions analyzed, presenting a COP of 2.10, [Formula: see text] of 56.9%, [Formula: see text] of 24 334 USD/year, ECOP of 4.86, and TEWI of 25.67 tons of CO2. Finally, evaluating the total plant cost rate of this cascade system, it was noted that the capital and maintenance cost rate [Formula: see text] corresponds to 89.1% of the [Formula: see text] value, the operational cost rate [Formula: see text] corresponds to 10.27% of the [Formula: see text] value and the environmental cost rate [Formula: see text] corresponds to 0.63% of [Formula: see text].","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010132521500255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, a cascade refrigeration system operating with four different ecological refrigerant pairs was modeled. This system uses R744 (Carbon dioxide) in the low-temperature cycle and operates with R290 (propane), R1234yf (2,3,3,3-tetrafluoropropene), R152a (1,1-difluorethane), and R717 (ammonia) in the high-temperature cycle. Energetic, exergetic, environmental, and economic performance of the cascade system was investigated to determine the most appropriate ecological refrigerant couple. The parameters used in each mentioned performance were COP (Coefficient of Performance), [Formula: see text] (Exergy Efficiency), TEWI (Total Equivalent Warming Impact), ECOP (Ecological coefficient of performance), and [Formula: see text] (Total plant cost rate), respectively. The results showed that the cascade refrigeration system operating with R744/R717 provided the best performance for the thermodynamic conditions analyzed, presenting a COP of 2.10, [Formula: see text] of 56.9%, [Formula: see text] of 24 334 USD/year, ECOP of 4.86, and TEWI of 25.67 tons of CO2. Finally, evaluating the total plant cost rate of this cascade system, it was noted that the capital and maintenance cost rate [Formula: see text] corresponds to 89.1% of the [Formula: see text] value, the operational cost rate [Formula: see text] corresponds to 10.27% of the [Formula: see text] value and the environmental cost rate [Formula: see text] corresponds to 0.63% of [Formula: see text].
具有四种不同生态制冷剂对的梯级制冷系统运行的能量、活力、环境和经济评估
在这项工作中,模拟了一个有四种不同生态制冷剂对的梯级制冷系统。该系统在低温循环中使用R744(二氧化碳),在高温循环中使用R290(丙烷)、R1234yf(2,3,3,3-四氟丙烯)、R152a(1,1-二氟烷)和R717(氨)。精力充沛,精力充沛,环境和经济性能的梯级系统进行了调查,以确定最合适的生态制冷剂对。上述各项性能中使用的参数分别是COP(性能系数)、[公式:见文](火用效率)、TEWI(总等效变暖影响)、ECOP(生态性能系数)和[公式:见文](工厂总成本率)。结果表明,采用R744/R717的复叠制冷系统在热力学条件分析中表现最佳,COP为2.10,[公式:见文]为56.9%,[公式:见文]为24334美元/年,ECOP为4.86,TEWI为25.67吨CO2。最后,对该级联系统的总厂成本率进行评价,注意到资本和维护成本率[公式:见文]占[公式:见文]值的89.1%,运行成本率[公式:见文]占[公式:见文]值的10.27%,环境成本率[公式:见文]占[公式:见文]值的0.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
0
期刊介绍: As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信