{"title":"Green Synthesis of L-DOPA Coated Gold Nanoparticles from a Natural Source","authors":"Ragni N. Vora, A. Joshi, N. Joshi","doi":"10.9734/bpi/cacs/v4/12139d","DOIUrl":null,"url":null,"abstract":"The use of plant-based phytochemicals in general synthesis and nano-phytomedicine engineering is a collaboration between plant science and nanotechnology that provides an intrinsically green approach to nanotechnology known as green nanotechnology. The goal of this study is to green synthesise gold nanoparticles from different concentrations of Mucuna monosperma seed extract and characterise them using scanning electron microscopy (SEM), UV-Visible spectrophotometer, and Fourier transform infrared (FTIR) spectroscopy. Mucuna monosperma is a large climbing shrub from family Fabaceae. The gold nanoparticles made with 4% seed extract exhibited good stability when compared to other concentrations. The surface properties of gold nanoparticles were studied using analytical tools such as FTIR, UV-Visible spectrophotometer, and SEM.The produced gold nanoparticles have a spherical form and can be coated with L-DOPA from plants. This opens the door to a wide range of uses, including a vital role in novel drug delivery system (NDDS).","PeriodicalId":9826,"journal":{"name":"Challenges and Advances in Chemical Science Vol. 4","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Challenges and Advances in Chemical Science Vol. 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/cacs/v4/12139d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The use of plant-based phytochemicals in general synthesis and nano-phytomedicine engineering is a collaboration between plant science and nanotechnology that provides an intrinsically green approach to nanotechnology known as green nanotechnology. The goal of this study is to green synthesise gold nanoparticles from different concentrations of Mucuna monosperma seed extract and characterise them using scanning electron microscopy (SEM), UV-Visible spectrophotometer, and Fourier transform infrared (FTIR) spectroscopy. Mucuna monosperma is a large climbing shrub from family Fabaceae. The gold nanoparticles made with 4% seed extract exhibited good stability when compared to other concentrations. The surface properties of gold nanoparticles were studied using analytical tools such as FTIR, UV-Visible spectrophotometer, and SEM.The produced gold nanoparticles have a spherical form and can be coated with L-DOPA from plants. This opens the door to a wide range of uses, including a vital role in novel drug delivery system (NDDS).