{"title":"Predicting Breast Cancer with Ensemble Methods on Cloud","authors":"Au Pham, T. Tran, Phuc Tran, H. Huynh","doi":"10.4108/eetcasa.v8i2.2788","DOIUrl":null,"url":null,"abstract":"There are many dangerous diseases and high mortality rates for women (including breast cancer). If the disease is detected early, correctly diagnosed and treated at the right time, the likelihood of illness and death is reduced. Previous disease prediction models have mainly focused on methods for building individual models. However, these predictive models do not yet have high accuracy and high generalization performance. In this paper, we focus on combining these individual models together to create a combined model, which is more generalizable than the individual models. Three ensemble techniques used in the experiment are: Bagging; Boosting and Stacking (Stacking include three models: Gradient Boost, Random Forest, Logistic Regression) to deploy and apply to breast cancer prediction problem. The experimental results show the combined model with the ensemble methods based on the Breast Cancer Wisconsin dataset; this combined model has a higher predictive performance than the commonly used individual prediction models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetcasa.v8i2.2788","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There are many dangerous diseases and high mortality rates for women (including breast cancer). If the disease is detected early, correctly diagnosed and treated at the right time, the likelihood of illness and death is reduced. Previous disease prediction models have mainly focused on methods for building individual models. However, these predictive models do not yet have high accuracy and high generalization performance. In this paper, we focus on combining these individual models together to create a combined model, which is more generalizable than the individual models. Three ensemble techniques used in the experiment are: Bagging; Boosting and Stacking (Stacking include three models: Gradient Boost, Random Forest, Logistic Regression) to deploy and apply to breast cancer prediction problem. The experimental results show the combined model with the ensemble methods based on the Breast Cancer Wisconsin dataset; this combined model has a higher predictive performance than the commonly used individual prediction models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.