Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans

Ainaz Eftekhar, Alexander Sax, Roman Bachmann, J. Malik, A. Zamir
{"title":"Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans","authors":"Ainaz Eftekhar, Alexander Sax, Roman Bachmann, J. Malik, A. Zamir","doi":"10.1109/ICCV48922.2021.01061","DOIUrl":null,"url":null,"abstract":"This paper introduces a pipeline to parametrically sample and render static multi-task vision datasets from comprehensive 3D scans from the real-world. In addition to enabling interesting lines of research, we show the tooling and generated data suffice to train robust vision models. Familiar architectures trained on a generated starter dataset reached state-of-the-art performance on multiple common vision tasks and benchmarks, despite having seen no benchmark or non-pipeline data. The depth estimation network outperforms MiDaS and the surface normal estimation network is the first to achieve human-level performance for in-the-wild surface normal estimation—at least according to one metric on the OASIS benchmark. The Dockerized pipeline with CLI, the (mostly python) code, PyTorch dataloaders for the generated data, the generated starter dataset, download scripts and other utilities are all available ${\\color{Magenta}through}\\;{\\color{Magenta}our}\\;{\\color{Magenta}project}\\;{\\color{Magenta}website}$.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"5 1","pages":"10766-10776"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.01061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

This paper introduces a pipeline to parametrically sample and render static multi-task vision datasets from comprehensive 3D scans from the real-world. In addition to enabling interesting lines of research, we show the tooling and generated data suffice to train robust vision models. Familiar architectures trained on a generated starter dataset reached state-of-the-art performance on multiple common vision tasks and benchmarks, despite having seen no benchmark or non-pipeline data. The depth estimation network outperforms MiDaS and the surface normal estimation network is the first to achieve human-level performance for in-the-wild surface normal estimation—at least according to one metric on the OASIS benchmark. The Dockerized pipeline with CLI, the (mostly python) code, PyTorch dataloaders for the generated data, the generated starter dataset, download scripts and other utilities are all available ${\color{Magenta}through}\;{\color{Magenta}our}\;{\color{Magenta}project}\;{\color{Magenta}website}$.
Omnidata:用于从3D扫描制作多任务中级视觉数据集的可扩展管道
本文介绍了一种对来自真实世界的全面三维扫描的静态多任务视觉数据集进行参数化采样和渲染的管道。除了启用有趣的研究线之外,我们还展示了工具和生成的数据足以训练健壮的视觉模型。在生成的starter数据集上训练的熟悉架构在多个常见视觉任务和基准测试中达到了最先进的性能,尽管没有看到基准测试或非管道数据。深度估计网络优于MiDaS,地表法线估计网络是第一个在野外地表法线估计中达到人类水平的网络——至少根据OASIS基准的一个指标。使用CLI的Dockerized管道,(主要是python)代码,生成数据的PyTorch数据加载器,生成的starter数据集,下载脚本和其他实用程序都可以从${\color{Magenta}通过}\;{\color{Magenta}our}\;{\color{Magenta}project}\;{\color{Magenta}website}$获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信