Robust Point Set Registration Based on Semantic Information

Qinlong Wang, Yang Yang, Teng Wan, S. Du
{"title":"Robust Point Set Registration Based on Semantic Information","authors":"Qinlong Wang, Yang Yang, Teng Wan, S. Du","doi":"10.1109/SMC42975.2020.9282862","DOIUrl":null,"url":null,"abstract":"Point cloud registration a challenging task in situations with poor initial value and scenarios with limited geometric structure. In these cases, the correct correspondence between two point clouds is unknown and difficult to establish. To cope with this problem, the semantic of partial points is introduced in this paper. Firstly, the semantic information is used to find more reasonable correspondence, i.e. semantic point pairs. Secondly, we formulate a novel objective function to integrate the matching error of semantic point pairs as guidance of registration. Thirdly, a hyperparameter is applied to balance the confidence of semantic point pairs. At last, a novel algorithm under the ICP framework is presented to optimize the rigid transformation iteratively. The evaluation of KITTI data set reveals the robustness and accuracy of our method in the complex scenes mentioned above.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"57 1","pages":"2553-2558"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9282862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Point cloud registration a challenging task in situations with poor initial value and scenarios with limited geometric structure. In these cases, the correct correspondence between two point clouds is unknown and difficult to establish. To cope with this problem, the semantic of partial points is introduced in this paper. Firstly, the semantic information is used to find more reasonable correspondence, i.e. semantic point pairs. Secondly, we formulate a novel objective function to integrate the matching error of semantic point pairs as guidance of registration. Thirdly, a hyperparameter is applied to balance the confidence of semantic point pairs. At last, a novel algorithm under the ICP framework is presented to optimize the rigid transformation iteratively. The evaluation of KITTI data set reveals the robustness and accuracy of our method in the complex scenes mentioned above.
基于语义信息的鲁棒点集配准
在初始值差和几何结构有限的情况下,点云配准是一项具有挑战性的任务。在这种情况下,两个点云之间的正确对应关系是未知的,很难确定。为了解决这一问题,本文引入了部分点的语义。首先,利用语义信息寻找更合理的对应关系,即语义点对。其次,我们建立了一个新的目标函数来整合语义点对的匹配误差,作为配准的指导。第三,利用超参数来平衡语义点对的置信度。最后,提出了一种在ICP框架下迭代优化刚性变换的新算法。对KITTI数据集的评估表明,本文方法在上述复杂场景下具有鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信