Clonidine Inhibits Phenylephrine-Induced Contraction of Rat Thoracic Aortae by Competitive Antagonism of α1-Adrenoceptors Independent of α2-Adrenoceptor Stimulation
D. Chino, M. Naramatsu, Keisuke Obara, Yoshio Tanaka
{"title":"Clonidine Inhibits Phenylephrine-Induced Contraction of Rat Thoracic Aortae by Competitive Antagonism of α1-Adrenoceptors Independent of α2-Adrenoceptor Stimulation","authors":"D. Chino, M. Naramatsu, Keisuke Obara, Yoshio Tanaka","doi":"10.4236/PP.2017.85012","DOIUrl":null,"url":null,"abstract":"Clonidine is a classically categorized α2-adrenoceptor (α2-AR) agonist that produces vascular contractions by stimulating arterial smooth muscle α2-ARs. However, clonidine inhibits α1-AR-mediated arterial contractions. Recently, it was suggested that repeated stimulation with clonidine induces desensitization of α2-ARs, thus inhibiting noradrenaline-induced smooth muscle contractions. In the present study, we examined whether clonidine-mediated inhibition of α1-AR contractions involves interactions with α2-ARs in rat thoracic aortae. 1) Clonidine and guanfacine inhibited electrical field stimulation-induced contractions in a concentration-dependent, yohimbine-sensitive manner in isolated rat vas deferens preparations. 2) Clonidine almost completely suppressed phenylephrine-induced sustained contractions of rat thoracic aortae. 3) Clonidine competitively inhibited phenylephrine-induced contractions with a pA2 value of 6.77 at concentrations between 10-7 and 10-6 M. At 10-5 M, clonidine inhibited phenylephrine-induced contractions and dramatically reduced maximum contractions. 4) In contrast, clonidine did not inhibit contractions produced by high KCl or prostaglandin F2α. 5) Inhibition of phenylephrine-induced sustained contractions by clonidine was also produced in the presence of yohimbine. However, guanfacine did not inhibit phenylephrine-induced sustained contractions. These findings suggest that clonidine inhibits phenylephrine-induced contraction of rat thoracic aortae by competitive antagonism of α1-ARs, which is mediated through a mechanism independent of α2-AR stimulation.","PeriodicalId":19875,"journal":{"name":"Pharmacology & Pharmacy","volume":"18 1","pages":"172-188"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology & Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/PP.2017.85012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Clonidine is a classically categorized α2-adrenoceptor (α2-AR) agonist that produces vascular contractions by stimulating arterial smooth muscle α2-ARs. However, clonidine inhibits α1-AR-mediated arterial contractions. Recently, it was suggested that repeated stimulation with clonidine induces desensitization of α2-ARs, thus inhibiting noradrenaline-induced smooth muscle contractions. In the present study, we examined whether clonidine-mediated inhibition of α1-AR contractions involves interactions with α2-ARs in rat thoracic aortae. 1) Clonidine and guanfacine inhibited electrical field stimulation-induced contractions in a concentration-dependent, yohimbine-sensitive manner in isolated rat vas deferens preparations. 2) Clonidine almost completely suppressed phenylephrine-induced sustained contractions of rat thoracic aortae. 3) Clonidine competitively inhibited phenylephrine-induced contractions with a pA2 value of 6.77 at concentrations between 10-7 and 10-6 M. At 10-5 M, clonidine inhibited phenylephrine-induced contractions and dramatically reduced maximum contractions. 4) In contrast, clonidine did not inhibit contractions produced by high KCl or prostaglandin F2α. 5) Inhibition of phenylephrine-induced sustained contractions by clonidine was also produced in the presence of yohimbine. However, guanfacine did not inhibit phenylephrine-induced sustained contractions. These findings suggest that clonidine inhibits phenylephrine-induced contraction of rat thoracic aortae by competitive antagonism of α1-ARs, which is mediated through a mechanism independent of α2-AR stimulation.