Amaar Siyal, Khurshed Rahimov, W. Alameri, E. Al-Shalabi
{"title":"Recent Advances in Capillary Desaturation Curves for Sandstone and Carbonate Reservoirs","authors":"Amaar Siyal, Khurshed Rahimov, W. Alameri, E. Al-Shalabi","doi":"10.2118/207595-ms","DOIUrl":null,"url":null,"abstract":"\n Different enhanced oil recovery (EOR) methods are usually applied to target remaining oil saturation in a reservoir after both conventional primary and secondary recovery stages. The remaining oil in the reservoir is classified into capillary trapped residual oil and unswept /bypassed oil. Mobilizing the residual oil in the reservoir is usually achieved through either decreasing the capillary forces and/or increasing the viscous or gravitational forces. The recovery of the microscopically trapped residual oil is mainly studied using capillary desaturation curve (CDC). Hence, a fundamental understanding of the CDC is needed for optimizing the design and application of different EOR methods in both sandstone and carbonate reservoirs. For sandstone reservoirs, especially water-water rocks, determining the residual oil saturation and generating CDC has been widely studied and documented in literature. On the other hand, very few studies have been conducted on carbonate rocks and less data is available. Therefore, this paper provides a comprehensive review of several important research studies published on CDC over the past few decades for both sandstone and carbonate reservoirs. We critically analyzed and discussed theses CDC studies based on capillary number, Bond number, and trapping number ranges. The effect of different factors on CDC were further investigated including interfacial tension, heterogeneity, permeability, and wettability.\n This comparative review shows that capillary desaturation curves in carbonates are shallower as opposed to these in sandstones. This is due to different factors such as the presence of high fracture density, presence of micropores, large pore size distribution, mixed-to-oil wetting nature, high permeability, and heterogeneity. In general, the critical capillary number reported in literature for sandstone rocks is in the range of 10−5 to 10−2. However, for carbonate rocks, that number ranges between 10−8 and 10−5. In addition, the wettability has been shown to have a major effect on the shape of CDC in both sandstone and carbonate rocks; different CDCs have been reported for water-wet, mixed-wet, and oil-wet rocks. The CDC shape is broader and the capillary number values are higher in oil-wet rocks compared to mixed-wet and water-wet rocks. This study provides a comprehensive and comparative analysis of CDC in both sandstone and carbonate rocks, which serves as a guide in understanding different CDCs and hence, better screening of different EOR methods for different types of reservoirs.","PeriodicalId":10967,"journal":{"name":"Day 1 Mon, November 15, 2021","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207595-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Different enhanced oil recovery (EOR) methods are usually applied to target remaining oil saturation in a reservoir after both conventional primary and secondary recovery stages. The remaining oil in the reservoir is classified into capillary trapped residual oil and unswept /bypassed oil. Mobilizing the residual oil in the reservoir is usually achieved through either decreasing the capillary forces and/or increasing the viscous or gravitational forces. The recovery of the microscopically trapped residual oil is mainly studied using capillary desaturation curve (CDC). Hence, a fundamental understanding of the CDC is needed for optimizing the design and application of different EOR methods in both sandstone and carbonate reservoirs. For sandstone reservoirs, especially water-water rocks, determining the residual oil saturation and generating CDC has been widely studied and documented in literature. On the other hand, very few studies have been conducted on carbonate rocks and less data is available. Therefore, this paper provides a comprehensive review of several important research studies published on CDC over the past few decades for both sandstone and carbonate reservoirs. We critically analyzed and discussed theses CDC studies based on capillary number, Bond number, and trapping number ranges. The effect of different factors on CDC were further investigated including interfacial tension, heterogeneity, permeability, and wettability.
This comparative review shows that capillary desaturation curves in carbonates are shallower as opposed to these in sandstones. This is due to different factors such as the presence of high fracture density, presence of micropores, large pore size distribution, mixed-to-oil wetting nature, high permeability, and heterogeneity. In general, the critical capillary number reported in literature for sandstone rocks is in the range of 10−5 to 10−2. However, for carbonate rocks, that number ranges between 10−8 and 10−5. In addition, the wettability has been shown to have a major effect on the shape of CDC in both sandstone and carbonate rocks; different CDCs have been reported for water-wet, mixed-wet, and oil-wet rocks. The CDC shape is broader and the capillary number values are higher in oil-wet rocks compared to mixed-wet and water-wet rocks. This study provides a comprehensive and comparative analysis of CDC in both sandstone and carbonate rocks, which serves as a guide in understanding different CDCs and hence, better screening of different EOR methods for different types of reservoirs.