Numerical Solutions of Time-Fractional Whitham–Broer–Kaup Equations via Sumudu Decomposition Method

IF 0.7 Q2 MATHEMATICS
Shams A. Ahmed, Mohamed Elbadri, Abdelgabar Adam Hassan, Walid Hdidi
{"title":"Numerical Solutions of Time-Fractional Whitham–Broer–Kaup Equations via Sumudu Decomposition Method","authors":"Shams A. Ahmed, Mohamed Elbadri, Abdelgabar Adam Hassan, Walid Hdidi","doi":"10.1155/2023/4664866","DOIUrl":null,"url":null,"abstract":"In this paper, the coupled system of Whitham–Broer–Kaup equations of the Caputo fractional derivative (CFD) is studied using the Sumudu decomposition method (SDM). Using different dispersion relations, these equations are needed to describe the properties of waves in shallow water. The current investigation for the future scheme includes convergence and error analysis. We use two examples to demonstrate the leverage and effectiveness of the proposed scheme, and the error analysis is discussed to ensure its accuracy. The numerical simulation is carried out to ensure the accuracy of the future technique. The obtained numerical and graphical results are presented, and the proposed scheme is computationally very accurate and simple to study and solve fractionally coupled nonlinear complex phenomena encountered in science and technology.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4664866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the coupled system of Whitham–Broer–Kaup equations of the Caputo fractional derivative (CFD) is studied using the Sumudu decomposition method (SDM). Using different dispersion relations, these equations are needed to describe the properties of waves in shallow water. The current investigation for the future scheme includes convergence and error analysis. We use two examples to demonstrate the leverage and effectiveness of the proposed scheme, and the error analysis is discussed to ensure its accuracy. The numerical simulation is carried out to ensure the accuracy of the future technique. The obtained numerical and graphical results are presented, and the proposed scheme is computationally very accurate and simple to study and solve fractionally coupled nonlinear complex phenomena encountered in science and technology.
时间分数阶Whitham-Broer-Kaup方程的Sumudu分解数值解
本文采用Sumudu分解方法(SDM)研究了Caputo分数阶导数(CFD)的Whitham-Broer-Kaup方程耦合系统。使用不同的色散关系,需要这些方程来描述浅水中波浪的性质。目前对未来方案的研究包括收敛性和误差分析。通过两个算例验证了该方法的有效性和有效性,并对误差分析进行了讨论,以保证其准确性。为了保证未来技术的准确性,进行了数值模拟。给出了所得的数值和图形结果,表明所提出的方案计算精度高,易于研究和解决科学技术中遇到的分数耦合非线性复杂现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信