Overview of metallurgical studies on weld deposited surface by plasma transferred arc technique

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING
V. Kalyankar, H. Naik
{"title":"Overview of metallurgical studies on weld deposited surface by plasma transferred arc technique","authors":"V. Kalyankar, H. Naik","doi":"10.1051/METAL/2020088","DOIUrl":null,"url":null,"abstract":"Research on plasma transferred arc (PTA) coatings has increased contemplation due to its augmented appropriateness which results from the advanced materials used in applications like mining, petroleum and power plant sectors. This article further broadens the research scope of investigation, by influencing metallurgical and processing aspects in accordance with the significance of microstructural changes. Martensitic formation with coarser structure, carbide phase formation and fine interdendritic eutectic matrix are the significant metallurgical aspects for an improved surface characteristic. Welding current, powder feed rate and travel speed, are the significant processing variables to achieve the microstructural changes like uniform dendritic growth, finer grain size, etc. The addition of alloying elements and heat treatment are the most observed processing conditions for the formation of precipitates and carbide phases. A schematic summary, the significance of processing variables, processing conditions and process modelling and simulation on metallurgical aspects have been enumerated in this paper. Further, critical comments and findings from in-depth review have also been discussed for the future scope. Hence, this review will be helpful to ascertain the relation among the microstructural evolution, the applicability of microscopic tools and the mechanical properties for the forthcoming researchers and the industrial persons.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"25 1","pages":"111"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/METAL/2020088","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 3

Abstract

Research on plasma transferred arc (PTA) coatings has increased contemplation due to its augmented appropriateness which results from the advanced materials used in applications like mining, petroleum and power plant sectors. This article further broadens the research scope of investigation, by influencing metallurgical and processing aspects in accordance with the significance of microstructural changes. Martensitic formation with coarser structure, carbide phase formation and fine interdendritic eutectic matrix are the significant metallurgical aspects for an improved surface characteristic. Welding current, powder feed rate and travel speed, are the significant processing variables to achieve the microstructural changes like uniform dendritic growth, finer grain size, etc. The addition of alloying elements and heat treatment are the most observed processing conditions for the formation of precipitates and carbide phases. A schematic summary, the significance of processing variables, processing conditions and process modelling and simulation on metallurgical aspects have been enumerated in this paper. Further, critical comments and findings from in-depth review have also been discussed for the future scope. Hence, this review will be helpful to ascertain the relation among the microstructural evolution, the applicability of microscopic tools and the mechanical properties for the forthcoming researchers and the industrial persons.
等离子转移电弧熔敷表面冶金研究综述
由于在采矿、石油和发电厂等应用领域使用的先进材料增强了其适用性,因此对等离子转移电弧(PTA)涂层的研究越来越受到关注。本文根据微观组织变化的意义,从冶金和加工两个方面进一步拓宽了研究范围。马氏体的形成具有较粗的组织,碳化物相的形成和细小的枝晶间共晶基体是改善表面特性的重要冶金方面。焊接电流、粉末进给量和行程速度是实现枝晶生长均匀、晶粒尺寸更细等显微组织变化的重要工艺变量。合金元素的添加和热处理是析出相和碳化物相形成的最常见的加工条件。本文简要概述了工艺变量、工艺条件和工艺建模与仿真在冶金方面的意义。此外,还讨论了深入审查的关键意见和结果,以供今后使用。因此,本文的综述将有助于今后的研究人员和工业人员弄清微观组织演变、显微工具的适用性与力学性能之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信