Inferring Hidden Statuses and Actions in Video by Causal Reasoning

A. Fire, Song-Chun Zhu
{"title":"Inferring Hidden Statuses and Actions in Video by Causal Reasoning","authors":"A. Fire, Song-Chun Zhu","doi":"10.1109/CVPRW.2017.13","DOIUrl":null,"url":null,"abstract":"In the physical world, cause and effect are inseparable: ambient conditions trigger humans to perform actions, thereby driving status changes of objects. In video, these actions and statuses may be hidden due to ambiguity, occlusion, or because they are otherwise unobservable, but humans nevertheless perceive them. In this paper, we extend the Causal And-Or Graph (C-AOG) to a sequential model representing actions and their effects on objects over time, and we build a probability model for it. For inference, we apply a Viterbi algorithm, grounded on probabilistic detections from video, to fill in hidden and misdetected actions and statuses. We analyze our method on a new video dataset that showcases causes and effects. Our results demonstrate the effectiveness of reasoning with causality over time.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"52 1","pages":"48-56"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In the physical world, cause and effect are inseparable: ambient conditions trigger humans to perform actions, thereby driving status changes of objects. In video, these actions and statuses may be hidden due to ambiguity, occlusion, or because they are otherwise unobservable, but humans nevertheless perceive them. In this paper, we extend the Causal And-Or Graph (C-AOG) to a sequential model representing actions and their effects on objects over time, and we build a probability model for it. For inference, we apply a Viterbi algorithm, grounded on probabilistic detections from video, to fill in hidden and misdetected actions and statuses. We analyze our method on a new video dataset that showcases causes and effects. Our results demonstrate the effectiveness of reasoning with causality over time.
用因果推理推断视频中的隐藏状态和动作
在物理世界中,因果是不可分割的:环境条件触发人的行为,从而驱动物体状态的变化。在视频中,这些动作和状态可能由于模糊、遮挡或无法观察而被隐藏,但人类仍然可以感知到它们。在本文中,我们将因果或因果图(C-AOG)扩展为一个表示动作及其随时间对对象的影响的序列模型,并为此建立了一个概率模型。对于推理,我们应用基于视频概率检测的Viterbi算法来填充隐藏和误检测的动作和状态。我们在一个展示因果关系的新视频数据集上分析了我们的方法。我们的结果表明,随着时间的推移,因果关系推理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信