Integration of Borehole Acoustic Reflectivity Survey and Fracture Pressure Analysis to Determine Properties of Far-Field Heterogeneities During Stimulation in Tight Reservoirs

D. Abdrazakov, E. Karpekin, A. Filimonov, Ivan Pertsev, A. Burlibayev, M. Aimagambetov, V. Blinov, B. Akbayev, A. Timonin, D. Ezersky
{"title":"Integration of Borehole Acoustic Reflectivity Survey and Fracture Pressure Analysis to Determine Properties of Far-Field Heterogeneities During Stimulation in Tight Reservoirs","authors":"D. Abdrazakov, E. Karpekin, A. Filimonov, Ivan Pertsev, A. Burlibayev, M. Aimagambetov, V. Blinov, B. Akbayev, A. Timonin, D. Ezersky","doi":"10.2118/204624-ms","DOIUrl":null,"url":null,"abstract":"\n The presence of conductive and extended heterogeneous features not connected to the wellbore and located beyond the investigation depths of standard characterization tools can be the reason for unexpected loss of net pressure during stimulation treatments due to the hydraulic fracture breakthrough into these heterogeneous areas. In current field practice, if such breakthrough occurs, it is considered as bad luck without the possibility of the quantitative analysis. This mindset can be changed in favor of the stimulation and reservoir management success using an approach that ties the thorough fracture pressure analysis with the output of the specific acoustic reflectivity survey capable of identifying position, shape, and orientation of far-field heterogeneous features.\n The approach consists of four steps and is applicable to cases when the hydraulic fracture experiences breakthrough into the heterogeneity. First, before the stimulation treatments, at the reservoir characterization stage, a borehole acoustic reflectivity survey is run. Gathered data are interpreted and visualized according to a specific workflow that yields the image of the heterogeneous areas located around the wellbore in the radius of several tens of meters. Second, the hydraulic fracturing treatment is performed, and fracture pressure analysis is performed, which identifies the pressure drops typical for the breakthrough. Third, after the breakthrough into the heterogeneity is confirmed, the distance to this heterogeneity is used as a marker for calibration of the fracture properties and geometry. Finally, the post-stimulation pressure and production data are used to define the properties of the heterogeneous features, such as conductivity and approximate dimensions.\n The comprehensive field application example of the suggested approach confirmed its effectiveness. For the tight carbonate formations, the heterogeneity in a form of fracture corridor was revealed by the acoustic reflectivity survey at least 20 m away from the wellbore. The breakthrough into this heterogeneity was observed during the acid fracturing treatment. The distance to the heterogeneity and observed pumping time to breakthrough were used as markers characterizing fracture propagation; reservoir and rock properties were adjusted using a fracturing simulator to obtain this fracture propagation. Finally, the post-stimulation production data were analyzed to determine infinite conductivity of the fracture corridor and quantify its extent downward. Data gathered during reservoir and hydraulic fracture properties calibration allowed for optimization of stimulation strategy of the target layer throughout the field; the information about the heterogeneity’s properties allowed for optimization of the completion and reservoir development strategy.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204624-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of conductive and extended heterogeneous features not connected to the wellbore and located beyond the investigation depths of standard characterization tools can be the reason for unexpected loss of net pressure during stimulation treatments due to the hydraulic fracture breakthrough into these heterogeneous areas. In current field practice, if such breakthrough occurs, it is considered as bad luck without the possibility of the quantitative analysis. This mindset can be changed in favor of the stimulation and reservoir management success using an approach that ties the thorough fracture pressure analysis with the output of the specific acoustic reflectivity survey capable of identifying position, shape, and orientation of far-field heterogeneous features. The approach consists of four steps and is applicable to cases when the hydraulic fracture experiences breakthrough into the heterogeneity. First, before the stimulation treatments, at the reservoir characterization stage, a borehole acoustic reflectivity survey is run. Gathered data are interpreted and visualized according to a specific workflow that yields the image of the heterogeneous areas located around the wellbore in the radius of several tens of meters. Second, the hydraulic fracturing treatment is performed, and fracture pressure analysis is performed, which identifies the pressure drops typical for the breakthrough. Third, after the breakthrough into the heterogeneity is confirmed, the distance to this heterogeneity is used as a marker for calibration of the fracture properties and geometry. Finally, the post-stimulation pressure and production data are used to define the properties of the heterogeneous features, such as conductivity and approximate dimensions. The comprehensive field application example of the suggested approach confirmed its effectiveness. For the tight carbonate formations, the heterogeneity in a form of fracture corridor was revealed by the acoustic reflectivity survey at least 20 m away from the wellbore. The breakthrough into this heterogeneity was observed during the acid fracturing treatment. The distance to the heterogeneity and observed pumping time to breakthrough were used as markers characterizing fracture propagation; reservoir and rock properties were adjusted using a fracturing simulator to obtain this fracture propagation. Finally, the post-stimulation production data were analyzed to determine infinite conductivity of the fracture corridor and quantify its extent downward. Data gathered during reservoir and hydraulic fracture properties calibration allowed for optimization of stimulation strategy of the target layer throughout the field; the information about the heterogeneity’s properties allowed for optimization of the completion and reservoir development strategy.
井眼声反射测量与裂缝压力分析相结合确定致密储层增产过程远场非均质性
导电性和延伸性非均质特征的存在没有与井筒相连,并且位于标准表征工具的研究深度之外,这可能是由于水力裂缝突破到这些非均质区域而导致增产处理期间净压力意外损失的原因。在目前的现场实践中,如果出现这种突破,则被认为是运气不好,无法进行定量分析。这种想法可以改变,有利于增产和油藏管理的成功,使用一种方法,将彻底的裂缝压力分析与特定的声波反射率测量的输出联系起来,这种方法能够识别远场非均质特征的位置、形状和方向。该方法分为四个步骤,适用于水力裂缝进入非均质层的情况。首先,在增产处理之前,在储层表征阶段,进行井眼声反射率测量。根据特定的工作流程,对收集到的数据进行解释和可视化,生成半径为几十米的井筒周围非均匀区域的图像。其次,进行水力压裂处理,并进行裂缝压力分析,确定突破的典型压降。第三,在确认进入非均质层后,将与非均质层的距离作为裂缝性质和几何形状校准的标记。最后,利用增产后压力和生产数据来定义非均质特征的性质,如导电性和近似尺寸。综合现场应用实例验证了该方法的有效性。对于致密的碳酸盐岩地层,通过距离井筒至少20 m的声反射测量,可以发现裂缝走廊形式的非均质性。这种非均质性的突破是在酸压裂过程中观察到的。利用到非均质层的距离和观察到的泵注突破时间作为裂缝扩展的标志;利用压裂模拟器调整储层和岩石性质,以获得裂缝扩展。最后,对增产后的生产数据进行分析,以确定裂缝走廊的无限导流能力,并量化其向下的程度。在储层和水力裂缝特性校准过程中收集的数据可用于优化整个油田目标层的增产策略;有关非均质性的信息有助于优化完井和油藏开发策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信